Log in

Microstructural Evolution and Mechanical Properties of a Continuously Cast Al–Mg–Si–Cu Alloy Processed by Repetitive Continuous Extrusion Forming

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A continuously cast Al–Mg–Si–Cu alloy was processed by repetitive continuous extrusion forming (R-Conform) and the corresponding deformation behaviors, microstructural evolution and mechanical properties were investigated systematically by combining uniaxial compression deformation, finite element simulation, microstructural observation and mechanical test. The results showed that the grain size of Al–Mg–Si–Cu alloy bar was gradually refined and became more uniform after R-Conform processing with the increase of pass as a result of continuous dynamic recrystallization. The evolution of microstructure was related to the complex thermomechanical conditions of temperature, shear rate and the distribution of accumulated strain during R-Conform process. Then the improvement of properties was obtained by the refined grains after R-Conform processing. Further, the dense and fine precipitates formed after solution treatment and aging led to optimized mechanical properties with tensile strength approximate 400 MPa and elongation about 17.8%.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Hirsch, Trans. Nonferrous Met. Soc. China 24, 8 (2014)

    Article  Google Scholar 

  2. L. Ding, Z. Jia, J. Nie, Y. Weng, L. Cao, H. Chen, X. Wu, Q. Liu, Acta Mater. 145, 437 (2018)

    Article  CAS  Google Scholar 

  3. J. Man, L. **g, S.G. Jie, J. Alloy Compd. 437, 146 (2007)

    Article  CAS  Google Scholar 

  4. Q. **ao, H. Liu, D. Yi, D. Yin, Y. Chen, Y. Zhang, B. Wang, J. Alloy Compd. 695, 1005 (2017)

    Article  CAS  Google Scholar 

  5. K. Liu, X.G. Chen, Mater. Des. 84, 340 (2015)

    Article  CAS  Google Scholar 

  6. Y. Xu, H. Nagaumi, Y. Han, G. Zhang, T. Zhai, Metall. Mater. Trans. A 48, 1 (2017)

    CAS  Google Scholar 

  7. L. Lodgaard, N. Ryum, Mater. Sci. Eng. A 283, 144 (2000)

    Article  Google Scholar 

  8. X. Ji, H. Zhang, S. Luo, F. Jiang, D. Fu, Mater. Sci. Eng. A 649, 128 (2016)

    Article  CAS  Google Scholar 

  9. H. Cai, J. Hu, F. Jiang, D. Fu, J. Teng, H. Zhang, Mater. Sci. Eng. A 753, 192 (2019)

    Article  CAS  Google Scholar 

  10. R. Lu, S. Zheng, J. Teng, J. Hu, D. Fu, J. Chen, G. Zhao, F. Jiang, H. Zhang, J. Mater. Sci. Technol. 80, 150 (2021)

    Article  CAS  Google Scholar 

  11. X. Zhang, H. Zhang, X. Kong, D. Fu, Trans. Nonferrous Met. Soc. China 25, 1763 (2015)

    Article  CAS  Google Scholar 

  12. N. Zhao, C. Ban, Met. Mater. Int. 28, 2513 (2022)

  13. R.Z. Valiev, I.V. Alexandrov, Nanostruct. Mater. 45, 35 (1999)

    Article  Google Scholar 

  14. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 47, 579 (1999)

    Article  CAS  Google Scholar 

  15. S. Samiei, G. Dini, M. Ebrahimian-Hosseinabadi, Met. Mater. Int. (2022). https://doi.org/10.1007/s12540-022-01202-y

  16. K. Edalati, Z. Horita, Mater. Sci. Eng. A 652, 325 (2016)

    Article  CAS  Google Scholar 

  17. T.G. Langdon, Mater. Sci. Eng. A 462, 3 (2007)

    Article  Google Scholar 

  18. P.N. Rao, D. Singh, R. Jayaganthan, Mater. Des. 56, 97 (2014)

    Article  CAS  Google Scholar 

  19. G.J. Raab, R.Z. Valiev, T.C. Lowe, Y.T. Zhu, Mater. Sci. Eng. A 382, 30 (2004)

    Article  Google Scholar 

  20. W. Huo, L. Hou, C. Hua, L. Zhuang, J. Zhang, Mater. Sci. Eng. A 618, 244 (2014)

    Article  CAS  Google Scholar 

  21. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog Mater. Sci. 60, 130 (2014)

    Article  CAS  Google Scholar 

  22. X. Kong, H. Zhang, X. Ji, Mater. Sci. Eng. A 612, 131 (2014)

    Article  CAS  Google Scholar 

  23. J. Hu, J. Teng, X. Ji, D. Fu, W. Zhang, H. Zhang, Mater. Sci. Eng. A 695, 35 (2017)

    Article  CAS  Google Scholar 

  24. J. Hu, W. Zhang, D. Fu, J. Teng, H. Zhang, J. Mater. Res. Technol. 8, 5950 (2019)

    Article  CAS  Google Scholar 

  25. R. Lu, L. Zhang, S. Zheng, D. Fu, J. Teng, J. Chen, G. Zhao, F. Jiang, H. Zhang, Int. J. Miner Metall. Mater. 29, 11 (2022)

    Article  Google Scholar 

  26. Z. Shen, Z. Lin, P. Shi, J. Zhu, T. Zheng, B. Ding, Y. Guo, Y. Zhong, J. Mater. Sci. Technol. 110, 187 (2022)

    Article  Google Scholar 

  27. M. Vaseghi, H.S. Kim, Mater. Des. 36, 735 (2012)

    Article  CAS  Google Scholar 

  28. F. Kabirian, A. Khan, A. Pandey, Int. J. Plast. 55, 232 (2014)

    Article  CAS  Google Scholar 

  29. R.C. Picu, Acta Mater. 52, 3447 (2004)

    Article  CAS  Google Scholar 

  30. Y. Zhu, J. Fan, Z. Li, Y. Luo, Y. Niu, Mater. Today Commun. 30, 103060 (2022)

    Article  CAS  Google Scholar 

  31. I. Nikulin, A. Kipelova, S. Malopheyev, R. Kaibyshev, Acta Mater. 60, 487 (2012)

    Article  CAS  Google Scholar 

  32. A. Chaudhuri, A. Sarkar, S. Suwas, Int. J. Refract. Met. Hard Mater. 73, 168 (2018)

    Article  CAS  Google Scholar 

  33. A. Chaudhuri, A.N. Behera, A. Sarkar, R. Kapoor, R.K. Ray, S. Suwas, Acta Mater. 164, 153 (2019)

    Article  CAS  Google Scholar 

  34. G.W. Zhang, H. Nagaumi, Y. Han, Y. Xu, C.M. Parish, T.G. Zhai, Mater. Sci. Forum 877, 172 (2016)

    Article  Google Scholar 

  35. C.L. Liu, X. Wang, N.C. Parson, W.J. Poole, Mater. Sci. Eng. A 802, 140605 (2021)

    Article  CAS  Google Scholar 

  36. B. Dutta, E. Valdes, C.M. Sellars, Acta Metall. Mater. 40, 653 (1992)

    Article  CAS  Google Scholar 

  37. B. Dutta, C.M. Sellars, Mater. Sci. Tech. 3, 197 (1987)

    Google Scholar 

  38. E. Nes, and et al, Acta Metall. 33, 11 (1985)

    Article  CAS  Google Scholar 

  39. H. Nagaumi, J. Qin, C. Yu, X. Wang, L. Wang, Trans. Nonferrous Met. Soc. China 32, 1805 (2022)

    Article  CAS  Google Scholar 

  40. K. Huang, K. Zhang, K. Marthinsen, R.E. Logé, Acta Mater. 141, 360 (2017)

    Article  CAS  Google Scholar 

  41. X. Wang, M. Guo, C. Ma, J. Chen, J. Zhang, L. Zhuang, Int. J. Miner Metall. Mater. 25, 957 (2018)

    Article  Google Scholar 

  42. Y. Weng, Z. Jia, L. Ding, J. Liao, P. Zhang, Y. Xu, Q. Liu, Trans. Nonferrous Met. Soc. China 32, 436 (2022)

    Article  CAS  Google Scholar 

  43. R. Lapovok, L. Tóth, M. Winkler, S. Semiatin, J. Mater. Res. 24, 459 (2011)

    Article  Google Scholar 

  44. Y. Wang, L. Zhang, B. Guo, K. Li, S. Ni, Y. Du, M. Song, Mater. Res. Express 5, 106521 (2018)

    Article  Google Scholar 

  45. M. Guo, J. Zhu, Y. Zhang, G. Li, T. Lin, J. Zhang, L. Zhuang, Mater. Charact. 132, 248 (2017)

    Article  CAS  Google Scholar 

  46. X. Wang, M. Guo, Y. Zhang, H. **ng, Y. Li, J. Luo, J. Zhang, L. Zhuang, J. Alloy Compd. 657, 906 (2016)

    Article  CAS  Google Scholar 

  47. J. Jiang, M. Liu, Y. Liu, K. Tang, Z. Wang, Y. Li, Y. Yu, P. Skaret, H. Roven, Mater. Sci. Forum 877, 437 (2016)

    Article  Google Scholar 

  48. G. Xue, G. Zhong, S. Lin, H.-T. Li, X. Gui, L. Zhang, MATEC Web Conf. 326, 03003 (2020)

  49. R. Singh, A. Singh, N. Prasad, Mater. Sci. Eng. A 277, 114 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (52074114, 51904099), Key Technologies R&D in Strategic Emerging Industries and Transformation in High-tech Achievements Program of Hunan Province (2022GK4048), Graduate Training and Innovation Practice Base of Hunan Province and State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fulin Jiang, Dingfa Fu or Jie Teng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Lu, R., Tang, J. et al. Microstructural Evolution and Mechanical Properties of a Continuously Cast Al–Mg–Si–Cu Alloy Processed by Repetitive Continuous Extrusion Forming. Met. Mater. Int. 29, 2028–2039 (2023). https://doi.org/10.1007/s12540-022-01353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01353-y

Keywords

Navigation