Log in

Effect of Keyhole Gas Tungsten Arc Welding and Post-welding Heat Treatment on Microstructure and Hardness of Inconel 740H

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Keyhole mode gas tungsten arc welding (GTAW) is used to obtain crack-free full-penetration welds in Ni-base superalloy Inconel 740H. Associated spatial variation in microstructure and microhardness are correlated. Local softening in the heat-affected zone (HAZ) is observed after welding. This cannot be explained by changes in grain size, twin fraction or heterogeneous strain distribution, but instead can be attributed to the dissolution of ultra-fine grain boundary carbides. Fusion zone microstructure consists of large, columnar \(\gamma\) dendrites and Ti- and Nb-rich carbides at the interdendritic region. The relatively large grain size in the FZ results in a reduction in hardness compared to the base metal. Elemental partitioning during solidification is estimated from composition measurements in the FZ and compared against existing reports for conventional GTAW. The effect of different post-weld heat treatments (PWHTs) on the precipitation of \(\gamma^{\prime}\), disappearance of the dendritic microstructure, composition homogenization and spatial variation of microhardness is also investigated. Specifically, grain growth in the HAZ is observed after two-step PWHTs, and not for the single-step direct aging, which could have important implications for the creep response of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. J.J. deBarbadillo, INCONEL Alloy 740H, Mater. Ultra-Supercrit. Adv. Ultra-Supercrit. Power Plants, 2017 https://doi.org/10.1016/B978-0-08-100552-1.00014-2

    Article  Google Scholar 

  2. D.H. Bechetti, J.N. DuPont, J.J. De Barbadillo, B.A. Baker, and M. Watanabe, Microstructural Evolution of INCONEL® Alloy 740H® Fusion Welds During Creep, Metall. Mater. Trans. A, 2015, 46(2), p 739–755.

    Article  CAS  Google Scholar 

  3. D.H. Bechetti, J.N. DuPont, J.J. de Barbadillo, and B.A. Baker, Homogenization and Dissolution Kinetics of Fusion Welds in INCONEL® Alloy 740H®, Metall. Mater. Trans. A, 2014, 45(7), p 3051–3063.

    Article  CAS  Google Scholar 

  4. D. **ao, H. **g, L. Xu, L. Zhao, and Y. Han, Microstructure and Damage Evolution of Inconel 740H Welded Joint during Creep Process at 750 °C, J. Mater. Eng. Perform., 2021, 30(6), p 4562–4571.

    Article  CAS  Google Scholar 

  5. B. Mondal, M. Gao, T.A. Palmer, and T. DebRoy, Solidification Cracking of a Nickel Alloy during High-Power Keyhole Mode Laser Welding, J. Mater. Process. Technol., 2022, 305, p 117576.

    Article  CAS  Google Scholar 

  6. D.C. Tung and J.C. Lippold, Weld Solidification Behavior of Ni-Base Superalloys for Use in Advanced Supercritical Coal-Fired Power Plants, Superalloys, 2012, 2012, p 563–567.

    Article  Google Scholar 

  7. Code case 2702-5, Ni-25Cr-20Co Material, BPVC Code Cases: Boilers And Pressure Vessels, Am. Soc. Mech. Eng., 2022.

  8. R.D. Gollihue, B.A. Baker, J.E. Dierksheide, and J.M. Tanzosh, Practical Guide to Welding INCONEL Alloy 740H. In: Proceedings: 7th International Conference on Advances in Materials Technology for Fossil Power Plants, EPRI, Waikaloa, HA, 2013, p 1025–1038.

  9. J. Shingledecker, J. de Barbadillo, R. Gollihue, E. Griscom, D. Purdy, and A. Bridges, Development and Performance of INCONEL® Alloy 740H® Seam-Welded Pi**, Int. J. Press. Vessels Pip., 2023, 202, p 104875.

    Article  CAS  Google Scholar 

  10. K. Kumar, C. Sateesh Kumar, M. Masanta, and S. Pradhan, A Review on TIG Welding Technology Variants and Its Effect on Weld Geometry, Mater. Today Proc., 2022, 50, p 999–1004.

    Article  CAS  Google Scholar 

  11. S. Lathabai, B.L. Jarvis, and K.J. Barton, Comparison of Keyhole and Conventional Gas Tungsten Arc Welds in Commercially Pure Titanium, Mater. Sci. Eng. A, 2001, 299(1–2), p 81–93.

    Article  Google Scholar 

  12. Z. Liu, Y. Fang, S. Cui, Z. Luo, W. Liu, Z. Liu, Q. Jiang, and S. Yi, Stable Keyhole Welding Process with K-TIG, J. Mater. Process. Technol., 2016, 238, p 65–72.

    Article  Google Scholar 

  13. Y. Feng, Z. Luo, Z. Liu, Y. Li, Y. Luo, and Y. Huang, Keyhole Gas Tungsten Arc Welding of AISI 316L Stainless Steel, Mater. Des., 2015, 85, p 24–31.

    Article  CAS  Google Scholar 

  14. Y. Xuan, J. Yang, H. Liu, J. Deng, and Y. Wang, Microstructure and Mechanical Properties of Invar36 Alloy Joints Using Keyhole TIG Welding, Sci. Technol. Weld. Join., 2020, 25(8), p 712–718.

    Article  CAS  Google Scholar 

  15. A.B. Short, Gas Tungsten Arc Welding of α + β Titanium Alloys: A Review, Mater. Sci. Technol., 2009, 25(3), p 309–324.

    Article  CAS  Google Scholar 

  16. T. Teker and T. Kursun, Weldability of AA6063 Alloys by Using Keyhole Gas Tungsten Arc Welding Technique, Met. Mater., 2021, 52(04), p 237–242.

    Google Scholar 

  17. J.N. Du Pont, J.C. Lippold, and S.D. Kiser, Welding Metallurgy and Weldability of Nickel-Base Alloys, Wiley, Hoboken, 2009.

    Google Scholar 

  18. J.A. Siefert, J.P. Shingledecker, J.N. DuPont, and S.A. David, Weldability and Weld Performance of Candidate Nickel Based Superalloys for Advanced Ultrasupercritical Fossil Power Plants Part II: Weldability and Cross-Weld Creep Performance, Sci. Technol. Weld. Join., 2016, 21(5), p 397–427.

    Article  CAS  Google Scholar 

  19. S.A. David, S.S. Babu, and J.M. Vitek, Weldability and Microstructure Development in Nickel-Base Superalloys, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States), 1997.

  20. A. Ariaseta, N. Sadeghinia, J. Andersson, and O. Ojo, Keyhole TIG Welding of Newly Developed Nickel-Based Superalloy VDM Alloy 780, Weld. World, 2023, 67(1), p 209–222.

    Article  Google Scholar 

  21. J. Shingledecker and D. Purdy, “Recent Developments in Manufacturing and Fabrication of Alloy 740H Components for SCO2 Applications,” 2022.

  22. O.T. Ola, O.A. Ojo, and M.C. Chaturvedi, Laser Arc Hybrid Weld Microstructure in Nickel Based IN738 Superalloy, Mater. Sci. Technol., 2013, 29(4), p 426–438.

    Article  CAS  Google Scholar 

  23. T.W. Clyne and G.J. Davies, Comparison between Experimental Data and Theoretical Predictions Relating to Dependence of Solidification Cracking on Composition. In: Solidification and Casting of Metals\ Proc. Conf.\, Sheffield, England, July 1977, 1979, p 275–278.

  24. S. Kou, A Criterion for Cracking during Solidification, Acta Mater., 2015, 88, p 366–374.

    Article  CAS  Google Scholar 

  25. J. Shingledecker, J. Siefert, T. Lolla, J. Dupont, J. deBarbadillo, and R. Gollihue, Factors Influencing Propensity for Stress Relaxation Cracking in Inconel® Alloy 740H® and Practical Guidance for Applications, Proceedings of the 10th International Symposium on Superalloy 718 and Derivatives, E.A. Ott, J. Andersson, C. Sudbrack, Z. Bi, K. Bockenstedt, I. Dempster, M. Fahrmann, P. Jablonski, M. Kirka, X. Liu, D. Nagahama, T. Smith, M. Stockinger, and A. Wessman, Eds., (Cham), Springer Nature Switzerland, 2023, p 431–443, doi:https://doi.org/10.1007/978-3-031-27447-3_27.

  26. F. Uzun and A.M. Korsunsky, On the Analysis of Post Weld Heat Treatment Residual Stress Relaxation in Inconel Alloy 740H by Combining the Principles of Artificial Intelligence with the Eigenstrain Theory, Mater. Sci. Eng. A, 2019, 752, p 180–191.

    Article  CAS  Google Scholar 

  27. A.M. Brittan, J. Mahaffey, M. Anderson and K. Sridharan, Effect of Supercritical CO2 on the Performance of 740H Fusion Welds, Mater. Sci. Eng. A, 2019, 742, p 414–422.

    Article  CAS  Google Scholar 

  28. X. **e, C. Chi, Q. Yu, Z. Yao, M. Zhang, Y. Hu, J. Dong, H. Yu, S. Zhao, F. Lin, et al. An Investigation on Structure Stability of Advanced Austenitic Heat-Resisting Steels and Ni-Base Superalloys for 600-700 °C A-USC Power Plant Application In: Proceedings: Seventh International Conference on Advances in Materials Technology for Fossil Power Plants, (USA), ASM International, 2013.

  29. Y.S. Lim, J.S. Kim, H.P. Kim, and H.D. Cho, The Effect of Grain Boundary Misorientation on the Intergranular M23C6 Carbide Precipitation in Thermally Treated Alloy 690, J. Nucl. Mater., 2004, 335(1), p 108–114.

    Article  CAS  Google Scholar 

  30. H.T. Mallikarjuna, W.F. Caley, and N.L. Richards, The Effect of Cooling Rate on the γ’ Composition, Morphology and Corrosion Behaviour of IN738LC, Corros. Sci., 2019, 149, p 37–44.

    Article  CAS  Google Scholar 

  31. W. Liu, F. Lu, R. Yang, X. Tang, and H. Cui, Gleeble Simulation of the HAZ in Inconel 617 Welding, J. Mater. Process. Technol., 2015, 225, p 221–228.

    Article  CAS  Google Scholar 

  32. D. Tourret, J. Klemm-Toole, A.E. Castellanos, B. Rodgers, G. Becker, A. Saville, B. Ellyson, C. Johnson, B. Milligan, J. Copley, R. Ochoa, A. Polonsky, K. Pusch, M. Haines, K. Fezzaa, T. Sun, K. Clarke, S. Babu, T. Pollock, A. Karma, and A. Clarke, Morphological Stability of Solid-Liquid Interfaces under Additive Manufacturing Conditions, Acta Mater., 2023, 250, p 118858.

    Article  CAS  Google Scholar 

  33. Z.G. Gao, Numerical Analysis of Microstructure Anomalies during Laser Welding Nickel-Based Single-Crystal Superalloy Part II: Favorable Dendrite Tip Undercooling, Key Eng. Mater., 2022, 907, p 197–208.

    Article  Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the financial support received under the grant TMD/CERI/CleanCoal/2017/034 (IIT H) and Prof. G. Phanikumar, IIT Madras, for his help with the procurement of the IN740H plates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chatterjee.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athira, K.S., Chatterjee, S. Effect of Keyhole Gas Tungsten Arc Welding and Post-welding Heat Treatment on Microstructure and Hardness of Inconel 740H. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08831-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08831-3

Keywords

Navigation