Log in

Investigation of Structure and Performance of Cerium-Doped Lanthanum Fluoride Nanocrystals for Scintillators

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The synthesis and characterization of cerium-doped lanthanum fluoride (La(1−x)CexF3) nanocrystals have been carried out. The surfaces of La(1−x)CexF3 nanocrystals were modified with oleic acid using the co-precipitation technique, and then doped with cerium with various mole fractions (x) = 0.05, 0.10, 0.15, 0.20, and 0.25. The nanocrystals produced were characterized for their crystal structure using x-ray diffraction (XRD), their morphology by transmission electron microscopy (TEM), their functional group identification using Fourier-transform infrared (FTIR), and Raman spectroscopy, and their photoluminescence behavior using photoluminescence (PL) spectroscopy. Detailed investigations revealed that, based on the XRD data and TEM images, La(1−x)CexF3 exhibits trigonal-structured nanocrystals with the symmetry space group P-3c1. Among the samples, La0.75Ce0.25F3 exhibited the sharpest PL peak. The PL spectra for La0.75Ce0.25F3 nanocrystals excited at 370 nm and showed an intense emission peak at 495 nm with a lifetime τ = 1.523 × 10−10 s. This emission was assigned to the 5d → 4f (2F5/2 and 2F7/2) transitions of Ce3+ energy levels, indicating a luminescence center mechanism. These results indicate that the synthesized La0.75Ce0.25F3 is a promising phosphor material for detector scintillators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Wang, Hu. **, D. Tang, X. Liua, and Z. Zhen, Oleic acid (OA) modified LaF3: Er, Yb nanocrystals and their polymer hybrid materials for potential optical amplification applications. J. Mater. Chem. 17, 1597 (2007). https://doi.org/10.1039/B617754A.

    Article  CAS  Google Scholar 

  2. J.W. Stouwdam and F.C.J.M. van Veggel, Improvement in the luminescence properties and rocessability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 20, 11763 (2004). https://doi.org/10.1021/la048379g.

    Article  CAS  PubMed  Google Scholar 

  3. A.J. Steckl and J.M. Zavada, Photonic applications of rare earth doped materials. MRS Bull. 24, 16 (1999). https://doi.org/10.1557/S0883769400053008.

    Article  Google Scholar 

  4. Y. Wang, Y. Wang, C. Huang, T. Chen, and J. Wu, Ultra weak chemiluminescence enhanced by cerium-doped LaF3 nanoparticles: a potential nitrite analysis method. Front. Chem. 8, 639 (2020). https://doi.org/10.3389/fchem.2020.00639.pp.1-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. P. Agbo, J.S. Kanady, and R.J. Abergel, Infrared photon pair production in ligand-sensitized lanthanide nanocrystals. Front. Chem. 8, 579942 (2020). https://doi.org/10.3389/fchem.2020.579942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S.G. Gaurkhede, Microwave synthesis and studies room temperature optical properties of LaF3: Ce3+, Pr3+, Nd3+ nanocrystals. Nanosyst. Phys. Chem. Math. 11(1), 117 (2020). https://doi.org/10.3389/fchem.2020.00639.

    Article  CAS  Google Scholar 

  7. Z. Chen, G. Dong, H. Gao, and J. Qiu, Two/multi wavelength light excitation effects in optical materials: from fundamentals to applications. Prog. Mater. Sci. 105, 100568 (2019). https://doi.org/10.1016/j.pmatsci.2019.05.001.

    Article  Google Scholar 

  8. P. Guss, R. Guise, D. Yuan, S. Mukhopadhyay, R. O’Brien, D. Lowe, Z. Kang, H. Menkara, and V.V. Nagarkar, Lanthanum halide nanoparticle scintillators for nuclear radiation detection. J. Appl. Phys. 113, 064303 (2013). https://doi.org/10.1063/1.4790867.

    Article  CAS  Google Scholar 

  9. N. Shrivastava, Development of magnetic luminescent bifunctional nanomaterials and their application in radiation detection, Doctoral Thesis, Federal University of Maranhao, Sao Luis-MA, Brazil, pp. 16 (2017).

  10. Y.W. Zhang, X. Sun, R. Si, L.P. You, and C.H. Yan, Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127, 3260 (2005). https://doi.org/10.1021/ja042801y.

    Article  CAS  PubMed  Google Scholar 

  11. K.C. Elbert, W. Zygmunt, T. Vo, C.M. Vara, D.J. Rosen, N.M. Krook, S.C. Glotzer, and C.B. Murray, Anisotropic nanocrystal shape and ligand design for co-assembly. Sci. Adv. 7, 1 (2021). https://doi.org/10.1126/sciadv.abf9402.

    Article  CAS  Google Scholar 

  12. X. Kang, B. Wang, L. Zhu, and H. Zhu, Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear 265, 150 (2008). https://doi.org/10.1016/j.wear.2007.09.009.

    Article  CAS  Google Scholar 

  13. I. Cherniukh, G. Rainò, T.V. Sekh, C. Zhu, Y. Shynkarenko, R.A. John, E. Kobiyama, R.F. Mahrt, T. Stöferle, R. Erni, M.V. Kovalenko, and M.I. Bodnarchuk, Shape-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano 15, 16488 (2021). https://doi.org/10.1021/acsnano.1c06047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. T. Rogers, C. Han, B. Wagner, J. Nadler, and Z. Kang, Synthesis of luminescent nanoparticle embedded polymer nanocomposites for scintillation applications. MRS Proc. (2011). https://doi.org/10.1557/opl.2011.123.

    Article  Google Scholar 

  15. J. Kim, J.H. Lee, H. An, J. Lee, S.H. Park, Y.S. Seo, and W.H. Miller, Luminescence properties of LaF3: Ce nanoparticles encapsulated by oleic acid. Mater. Res. Bull. 57, 110 (2014). https://doi.org/10.1016/j.materresbull.2014.05.018.

    Article  CAS  Google Scholar 

  16. A.S. Oreshonkov, E.M. Roginskii, A.S. Krylov, A.A. Ershov, and V.N. Voronov, Structural, electronic and vibrational properties of laf3 according to density functional theory and Raman spectroscopy. J. Phys. Condens. Matter 30, 255901 (2018). https://doi.org/10.1088/1361-648X/aac452.

    Article  CAS  PubMed  Google Scholar 

  17. S. Chong and B.J. Riley, Thermal conversion in air of rare-earth fluorides to rare-earth oxyfluorides and rare-earth oxides. J. Nucl. Mater. 561, 153538 (2022). https://doi.org/10.1016/j.jnucmat.2022.153538.

    Article  CAS  Google Scholar 

  18. M.L. Afanasiev, S.P. Habuda, and A.G. Lundin, The symmetry and basic structures of LaF3, CeF3, PrF3 and NdF3. Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem. 28(10), 2903 (1972). https://doi.org/10.1107/s0567740872007198.

    Article  Google Scholar 

  19. A.K. Cheetham and B.E.F. Fender, A powder neutron diffraction study of lanthanum and cerium trifluorides. Acta Cryst. B32, 94 (1976). https://doi.org/10.1107/S0567740876002380.

    Article  CAS  Google Scholar 

  20. K. Schmalzl, Ab-initio-Rechnungen und TemperaturabhÄangige Neutronenstreuung an Fluoridkristallen, Dissertation, der UniversitÄat Regensburg, p. 127 (2004).

  21. W.M. Jordan, Computer simulation and neutron diffraction studies of superionic fluorides, Dissertation, University of London, p. 73 (1990).

  22. T.K. Srinivasan, M.T. Jose, B. Venkatraman, D. Ponraju, and A.K. Arora, Luminescence properties of LaF3:Ce nanoparticles. Proceedings NSRP‐19, p. 12 (2012).

  23. F. Tabatabaee, A.A. SabbaghAlvani, H. Sameie, S. Moosakhani, R. Salimi, and M. Taherian, Ce3+-doped LaF3 nanoparticles: wet-chemical synthesis and photo-physical characteristics “optical properties of LaF3: Ce nanomaterials.” Met. Mater. Int. 20(1), 169 (2014). https://doi.org/10.1007/s12540-014-1012-2.

    Article  CAS  Google Scholar 

  24. K.H. Harbbi and S.S. Jahil, Study the lattice distortion and particle size of one phase of mno by using Fourier analysis of x-ray diffraction lines. Adv. Phys. Theor. Appl. 65, 6 (2017).

    Google Scholar 

  25. T.K. Srinivasan, B. Venkatraman, D. Ponraju, and A.K. Arora, Photoluminescence properties of LaF3: Ce nanoparticles embedded in polyacrylamide. World J. Nano Sci. Eng. 2, 201 (2012). https://doi.org/10.4236/wjnse.2012.24027.

    Article  CAS  Google Scholar 

  26. A.T. Singh, M.M. Khandpekar, and S.G. Gaurkhede, Enhanced luminescence of L-Alanine capped Laf3: Ce nanoparticles useful in biological labeling. J. Nano Res. 32, 81 (2015). https://doi.org/10.4028/www.scientific.net/JNanoR.32.81.

    Article  CAS  Google Scholar 

  27. M.V. Limaye, S.B. Singh, S.K. Date, D. Kothari, V. Raghavendra Reddy, A. Gupta, V. Sathe, R.J. Choudhary, and S.K. Kulkarni, High coercivity of oleic acid capped CoFe2O4 nanoparticles at room temperature. J. Phys. Chem. 113, 9070 (2009). https://doi.org/10.1021/jp810975v.

    Article  CAS  Google Scholar 

  28. J. Ibarra, J. Melendres, M. Almada, M.G. Burboa, P. Taboada, J. Juárez, and M.A. Valdez, Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles. Mater. Res. Express 2, 095010 (2015). https://doi.org/10.1088/2053-1591/2/9/095010.

    Article  CAS  Google Scholar 

  29. P.K. Nampoothiri, M.N. Gandhi, and A.R. Kulkarni, Synthesis and characterization of NIR luminescent LaF3:Ln3+ nanoparticles and their transparent epoxy nanocomposites. Adv. Mater. Res. 748, 101 (2013). https://doi.org/10.4028/www.scientific.net/amr.748.101.

    Article  Google Scholar 

  30. K. Bootdee, M. Nithitanakul, and B.P. Grady, Synthesis and encapsulation of magnetite nanoparticles in PLGA: effect of amount of PLGA on characteristics of encapsulated nanoparticles. Polym. Bull. 69, 795 (2012). https://doi.org/10.1007/s00289-012-0773-3.

    Article  CAS  Google Scholar 

  31. Y. Numata, H. Kobayashi, N. Oonami, Y. Kasai, and H. Tanaka, Simultaneous determination of oleic and elaidic acids in their mixed solution by Raman spectroscopy. J. Mol. Struct. 1185, 200 (2019). https://doi.org/10.1016/j.molstruc.2019.02.110.

    Article  CAS  Google Scholar 

  32. H.H. Caspers, R.A. Buchanan, and H.R. Marlin, Lattice vibrations of LaF3. J. Chem. Phys. 41(1), 94 (1964). https://doi.org/10.1063/1.1725657.

    Article  Google Scholar 

  33. A.T. Singh, Thermal, optical and vibrational studies of tyrosine doped LaF3: Ce nanoparticles for bioimaging and biotagging. AIP Conf. Proc. 1953, 0302001 (2018). https://doi.org/10.1063/1.5032535.

    Article  CAS  Google Scholar 

  34. R.K. Feller, G.M. Purdy, D. Ortiz-Acosta, S. Stange, A. Li, E.A. McKigney, and R.E. Del Sesto, Large-scale synthesis of CexLa1−xF3 nanocomposite scintillator materials. J. Mater. Chem. 21(15), 5716 (2011). https://doi.org/10.1039/c0jm04162a.

    Article  CAS  Google Scholar 

  35. L. Brown, C.S. Macomber, B.L. Scotta, R.E. Del Sesto, M.E. Díaz García, and R. Badía-Laíño, Encyclopedia of Analytical Science, 3rd edition Elsevier Inc. University of Oviedo, Oviedo, Spain (2018). https://doi.org/10.1016/B978-0-12-409547-2.11183-7

  36. K. Sankar, J.B. Plumley, B.A. Akins, T.A. Memon, N.J. Withers, G.A. Smolyakov, and M. Osiński, Synthesis and characterization of scintillating cerium-doped lanthanum fluoride nanocrystals. Proc. SPIE 7189, 7189091 (2009). https://doi.org/10.1117/12.816894.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the financial support from the ORTN-BRIN, Republic of Indonesia based on decree of the Head of the Nuclear Energy Research Organization, Number: B-125/III/TN/3/2022, March 22, 2022. The authors thank Dr. Rohadi Awaludin as the head of ORTN and Dr. Abu Khalid Rivai as the head of PRTABN for administrative permission and assistance in facilitating research activities. The authors also thank Jos Budi Sulistyo, Ph.D. to harmonize English in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Purwamargapratala.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukirman, E., Wahyudianingsih, Sudjatno, A. et al. Investigation of Structure and Performance of Cerium-Doped Lanthanum Fluoride Nanocrystals for Scintillators. J. Electron. Mater. 53, 2921–2928 (2024). https://doi.org/10.1007/s11664-024-11053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11053-5

Keywords

Navigation