Log in

Effect of annealing atmospheres on the scintillation properties of Ce3+-doped YAG nanoscintillator

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Background

In this study, three sample detectors have been prepared by using cerium-activated YAG nanoscintillator (Y3Al5O12: Ce3+) synthesized by sol–gel method and heat-treat at 900 °C for 2 h in different atmospheres such as vacuum, air and nitrogen.

Purpose

Many studies about YAG: Ce3+ single crystal have been carried out, but the material at the nanoscale remains not enough understood. The objective of the present paper is to investigate the effects of annealing atmosphere on the scintillation properties and identify the suitable atmosphere that allow to design radiation detectors with high scintillation efficiency.

Methods

In order to accurately assess the scintillation properties, the nanoscintillator sample powders have been designed as a detector, in which, preparation operations such as surface homogenization and efficiency coupling with photomultiplier tube (PMT) window were developed. The study was performed using γ-rays 662 keV released from137Cs radioactive source, the bi-alkali GDB-4FF PMT was used as a photodetector. Nuclear instrumentation chain was set up in order to collect the pulse height spectra, NaI:Tl single-crystal scintillator was used as a reference detector to estimate the scintillation light yield. The delayed coincidence method was used for measuring the scintillation decay time of nanoscintillator sample detectors.

Results

The sample detector annealed at vacuum atmosphere exhibits the best scintillation properties, the scintillation light yield was estimated to be 14,600 ± 3400 ph/MeV and the fast component in the scintillation decay was 90 ns.

Conclusion

The vacuum is the suitable atmosphere which allows the development of radiation detectors with high scintillation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Tarafder, A.R. Molla, B. Karmakar, Chapter 13—advanced glass-ceramic nanocomposites for structural, photonic, and optoelectronic applications, in Glass Nanocomposites. ed. by B. Karmakar, K. Rademann, A.L.B.T.-G.N. Stepanov (William Andrew Publishing, Boston, 2016), pp.299–338

    Chapter  Google Scholar 

  2. Y.-C. Wu, S. Parola, O. Marty et al., Structural characterizations and waveguiding properties of YAG thin films obtained by different sol–gel processes. Opt. Mater. (Amst.) 27, 1471–1479 (2005). https://doi.org/10.1016/j.optmat.2005.03.004

    Article  ADS  Google Scholar 

  3. H.M.H. Fadlalla, C.C. Tang, S.Y. Wei, X.X. Ding, Preparation and properties of nanocrystalline powders in (Y1−xCex)3Al5O12 system. J. Lumin. 128, 1655–1659 (2008). https://doi.org/10.1016/j.jlumin.2008.03.018

    Article  Google Scholar 

  4. H.M.H. Fadlalla, C. Tang, Sol–gel preparation and photoluminescence properties of Ce3+-activated Y3Al5O12 nano-sized powders. J. Cryst. Growth 311, 3737–3741 (2009). https://doi.org/10.1016/j.jcrysgro.2009.04.040

    Article  ADS  Google Scholar 

  5. T. Ji, T. Wang, H. Li et al., Ce3+-doped yttrium aluminum garnet transparent ceramics for high-resolution X-ray imaging. Adv. Opt. Mater. (2022). https://doi.org/10.1002/adom.202102056

    Article  Google Scholar 

  6. M. Kim, H.J. Kim, J.Y. Cho et al., Crystal growth and scintillation properties of YAG: Ce3+ for γ and α detection. Appl. Radiat. Isot. 145, 126–130 (2019). https://doi.org/10.1016/j.apradiso.2018.12.011

    Article  Google Scholar 

  7. Y. Yan, C. Zhang, L. Zheng et al., Dosimeter based on YAG: Ce phosphor via sol-gel method for online X-ray radiation monitoring. Curr. Comput. Aided Drug Des. 11, 1567 (2021). https://doi.org/10.3390/cryst11121567

    Article  Google Scholar 

  8. D. Valiev, V. Vaganov, T. Han, et al., Time-resolved luminescence of YAG: Ce3+, Tb3+ ceramics. in AIP Conference Proceedings. (AIP Publishing LLC, 2019), pp. 20263

  9. A. Speghini, F. Piccinelli, M. Bettinelli, Synthesis, characterization and luminescence spectroscopy of oxide nanopowders activated with trivalent lanthanide ions: the garnet family. Opt. Mater. (Amst) 33, 247–257 (2011). https://doi.org/10.1016/j.optmat.2010.10.039

    Article  ADS  Google Scholar 

  10. W.T. Hong, J.H. Lee, J.W. Son et al., Color rendering improvement of the YAG: Ce3+ phosphors by co-do** with Gd3+ ions. Ceram. Int. 42, 2204–2208 (2016). https://doi.org/10.1016/j.ceramint.2015.10.010

    Article  Google Scholar 

  11. J. Jia, Y. Qiang, J. Xu et al., A comparison study on the substitution of Y3+−Al3+ by M2+−Si4+ (M=Ba, Sr, Ca, Mg) in Y3Al5O12: Ce3+ phosphor. J. Am. Ceram. Soc. 103, 5111–5119 (2020). https://doi.org/10.1111/jace.17204

    Article  Google Scholar 

  12. M.A. Almessiere, N.M. Ahmed, I. Massoudi et al., Study of the structural and luminescent properties of Ce3+ and Eu3+ co-doped YAG synthesized by solid state reaction. Optik (Stuttg) 158, 152–163 (2018). https://doi.org/10.1016/j.ijleo.2017.12.031

    Article  ADS  Google Scholar 

  13. M.V. Derdzyan, K.L. Hovhannesyan, A.V. Yeganyan et al., Dissimilar behavior of YAG: Ce and LuAG: Ce scintillator garnets regarding Li+ co-do**. Cryst. Eng. Comm. 20, 1520–1526 (2018). https://doi.org/10.1039/C7CE02194A

    Article  Google Scholar 

  14. M. Jia, J. Wen, W. Luo et al., Improved scintillating properties in Ce: YAG derived silica fiber with the reduction from Ce4+ to Ce3+ ions. J. Lumin. 221, 117063 (2020). https://doi.org/10.1016/j.jlumin.2020.117063

    Article  Google Scholar 

  15. Q. Wang, B. Yang, Y. Zhang et al., High light yield Ce3+-doped dense scintillating glasses. J. Alloys Compd. 581, 801–804 (2013). https://doi.org/10.1016/j.jallcom.2013.07.181

    Article  Google Scholar 

  16. O. Sidletskiy, K. Lebbou, D. Kofanov et al., Progress in fabrication of long transparent YAG: Ce and YAG: Ce, Mg single crystalline fibers for HEP applications. Cryst. Eng. Comm. 21, 1728–1733 (2019). https://doi.org/10.1039/C8CE01781F

    Article  Google Scholar 

  17. Z. Jiu**, L. Hongbin, S. Qiang et al., Effects of annealing treatments on luminescence and scintillation properties of Ce: Lu3Al5O12 crystal grown by Czochralski method. J. Rare Earths 25, 568–572 (2007). https://doi.org/10.1016/S1002-0721(07)60564-X

    Article  Google Scholar 

  18. S. Chen, B. Jiang, Q. Zhu et al., A effect of annealing atmosphere on scintillation properties of GYGAG: Ce, Mg scintillator ceramics. Nuclear Inst. Methods Phys. Res. 942, 0–4 (2019). https://doi.org/10.1016/j.nima.2019.162360

    Article  Google Scholar 

  19. W. Chewpraditkul, L. Swiderski, M. Moszynski et al., Comparative studies of Lu3Al5O12: Ce and Y3Al5O12: Ce scintillators for gamma-ray detection. Phys. Status Solidi Appl. Mater. Sci. 206, 2599–2605 (2009). https://doi.org/10.1002/pssa.200925161

    Article  ADS  Google Scholar 

  20. C. Zhang, J. Lin, Defect-related luminescent materials: synthesis, emission properties and applications. Chem. Soc. Rev. 41, 7938–7961 (2012). https://doi.org/10.1039/C2CS35215J

    Article  ADS  Google Scholar 

  21. C.B. Carter, M.G. Norton, Ceramic materials: science and engineering (Springer, London, 2007)

    Google Scholar 

  22. G. Blasse, Scintillator materials. Chem. Mater. 6, 1465–1475 (1994)

    Article  Google Scholar 

  23. C. Greskovich, S. Duclos, Ceramic scintillators. Annu. Rev. Mater. Sci. 27, 69–88 (1997)

    Article  ADS  Google Scholar 

  24. L. Yang, T. Lu, H. Xu, N. Wei, Synthesis of YAG powder by the modified sol–gel combustion method. J. Alloys. Compd. 484, 449–451 (2009). https://doi.org/10.1016/j.jallcom.2009.04.123

    Article  Google Scholar 

  25. F. Yuan, H. Ryu, Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation. Mater. Sci. Eng. B 107, 14–18 (2004). https://doi.org/10.1016/j.mseb.2003.10.002

    Article  Google Scholar 

  26. N. Jia, X. Zhang, W. He et al., Property of YAG: Ce phosphors powder prepared by mixed solvothermal method. J. Alloys Compd. 509, 1848–1853 (2011). https://doi.org/10.1016/j.jallcom.2010.10.071

    Article  Google Scholar 

  27. S.-K. Ruan, J.-G. Zhou, A.-M. Zhong et al., Synthesis of Y3Al5O12: Eu3+ phosphor by sol-gel method and its luminescence behavior. J. Alloys Compd. 275, 72–75 (1998). https://doi.org/10.1016/S0925-8388(98)00276-X

    Article  Google Scholar 

  28. A. Boukerika, L. Guerbous, N. Brihi, Ce-doped YAG phosphors prepared via sol–gel method: effect of some modular parameters. J. Alloys Compd. 614, 383–388 (2014). https://doi.org/10.1016/j.jallcom.2014.06.133

    Article  Google Scholar 

  29. S.K. Gupta, Y. Mao, Recent advances, challenges, and opportunities of inorganic nanoscintillators. Front. Optoelectron. 13, 156–187 (2020). https://doi.org/10.1007/s12200-020-1003-5

    Article  Google Scholar 

  30. A. Magi, M. Koshimizu, A. Watanabe et al., Optimization of phosphor concentration of surface-modified Bi2O3 nanoparticle loaded plastic scintillators for high energy photon detection. J. Mater. Sci. Mater. Electron 32, 7987–7999 (2021). https://doi.org/10.1007/s10854-021-05522-4

    Article  Google Scholar 

  31. J. Janda, The comparison of scintillation properties of YAP: Ce, YAG: Ce and ZnO: Ga powders as a potential substitution of LSC cocktail. J. Radioanal. Nucl. Chem. 314, 573–582 (2017). https://doi.org/10.1007/s10967-017-5376-x

    Article  Google Scholar 

  32. L. Guerbous, A. Boukerika, Nanomaterial host bands effect on the photoluminescence properties of Ce-doped YAG nanophosphor synthesized by sol-gel method. J. Nanomater. 2, 1–10 (2015). https://doi.org/10.1155/2015/617130

    Article  Google Scholar 

  33. A. Boukerika, L. Guerbous, M. Belamri, Effect of different annealing atmospheres on the structural and luminescence properties of Ce3+-doped YAG phosphors synthesized by sol–gel method. Optik (Stuttg) 127, 5235–5239 (2016). https://doi.org/10.1016/j.ijleo.2016.03.037

    Article  ADS  Google Scholar 

  34. G.K. de Oliveira, F.R. de Oliveira Silva, D.P. Vieira, L.C. Courrol, Synthesis and characterization of aminolevulinic acid with gold and iron nanoparticles by photoreduction method for non-communicable diseases diagnosis and therapy. J. Mater. Sci. Mater. Electron 30, 16789–16797 (2019). https://doi.org/10.1007/s10854-019-01337-6

    Article  Google Scholar 

  35. P. Agostinis, K. Berg, K.A. Cengel et al., Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011). https://doi.org/10.20517/2394-4722.2018.83

    Article  Google Scholar 

  36. J.M. Dąbrowski, L.G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment. Photochem. Photobiol. Sci. 14, 1765–1780 (2015). https://doi.org/10.1039/c5pp00132c

    Article  Google Scholar 

  37. W. Chen, J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 6, 1159–1166 (2006). https://doi.org/10.1166/jnn.2006.327

    Article  Google Scholar 

  38. N.Y. Morgan, G. Kramer-Marek, P.D. Smith et al., Nanoscintillator conjugates as photodynamic therapy-based radiosensitizers: calculation of required physical parameters. Radiat. Res. 171, 236–244 (2009). https://doi.org/10.1667/RR1470.1

    Article  ADS  Google Scholar 

  39. W. Sun, Z. Zhou, G. Pratx, H.C. **aoyuan Chen, Nanoscintillator-mediated X-ray induced photodynamic therapy for deep-seated tumors: from concept to biomedical applications. Theranostics 10, 1296–1318 (2020). https://doi.org/10.7150/thno.41578

    Article  Google Scholar 

  40. P. Sengar, P. Juárez, A. Verdugo-Meza et al., Development of a functionalized UV-emitting nanocomposite for the treatment of cancer using indirect photodynamic therapy. J. Nanobiotechnol. 16, 1–19 (2018). https://doi.org/10.1186/s12951-018-0344-3

    Article  Google Scholar 

  41. A. Jain, R. Koyani, C. Muñoz et al., Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells. J. Colloid Interface Sci. 526, 220–229 (2018). https://doi.org/10.1016/j.jcis.2018.04.100

    Article  ADS  Google Scholar 

  42. L.M. Bollinger, G.E. Thomas, Measurement of the time dependence of scintillation intensity by a delayed-coincidence method. Rev. Sci. Instrum. 32, 1044–1050 (1961). https://doi.org/10.1063/1.1717610

    Article  ADS  Google Scholar 

  43. J. Qin, C. Lai, J. **ao et al., Characteristics and time resolutions of two CeBr3 gamma-ray spectrometers. Radiat. Detect. Technol. Methods 4, 327–336 (2020). https://doi.org/10.1007/s41605-020-00187-9

    Article  Google Scholar 

  44. M. Moszynski, M. Kapusta, M. Mayhugh et al., Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997). https://doi.org/10.1109/23.603803

    Article  ADS  Google Scholar 

  45. E. Sysoeva, V. Tarasov, O. Zelenskaya, Comparison of the methods for determination of scintillation light yield. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 486, 67–73 (2002). https://doi.org/10.1016/S0168-9002(02)00676-9

    Article  ADS  Google Scholar 

  46. M. Gierlik, M. Moszynski, A. Nassalski et al., Investigation of absolute light. IEEE Trans. Nucl. Sci. 54, 1367–1371 (2007)

    Article  ADS  Google Scholar 

  47. M. Moszyński, M. Kapusta, M. Mayhugh et al., Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997). https://doi.org/10.1109/23.603803

    Article  ADS  Google Scholar 

  48. V. Jarý, J. Pejchal, Scintillators around us, Center of Administration and Operation CAS, v. v. i. Layout: Jakub Krč; Type: Serifa. in 1st edn., ed. by P. Královcová. (Institute of physics of the Czech Academy of Sciences, 2018), pp. 12413

  49. C.W.E. Eijk, Inorganic scintillators in medical imaging. Phys. Med. Biol. 47, R85-106 (2002). https://doi.org/10.1088/0031-9155/47/8/201

    Article  Google Scholar 

  50. M. Nikl, Scintillation detectors for X-rays. Meas. Sci. Technol. 17, R37 (2006). https://doi.org/10.1088/0957-0233/17/4/R01

    Article  ADS  Google Scholar 

  51. C. Dujardin, D. Amans, A. Belsky et al., Luminescence and scintillation properties at the nanoscale. IEEE Trans. Nucl. Sci. 57, 1348–1354 (2010). https://doi.org/10.1109/TNS.2009.2035697

    Article  ADS  Google Scholar 

  52. P. Dorenbos, J.T.M. de Haas, C.W.E. Van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Trans. Nucl. Sci. 42, 2190–2202 (1995). https://doi.org/10.1016/j.nima.2015.07.059

    Article  ADS  Google Scholar 

  53. Shah KS (2010) New scintillation detectors for PET. Dr Delft Univ Technol 259:

  54. P. Dorenbos, Light output and energy resolution of Ce3+-doped scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 486, 208–213 (2002). https://doi.org/10.1016/S0168-9002(02)00704-0

    Article  ADS  Google Scholar 

  55. E.B. Johnson, C.J. Stapels, X.J. Chen, et al. CMOS solid-state photomultipliers for high energy resolution calorimeters. in Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIII. (SPIE, 2011), pp. 127–140

  56. M. Moszyński, Energy resolution and non-proportionality of scintillation detectors–new observations. Radiat. Meas. 45, 372–376 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billel Zahra.

Ethics declarations

Conflict of interest

Conflict of interest on behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahra, B., Guerbous, L., Bousbia-salah, H. et al. Effect of annealing atmospheres on the scintillation properties of Ce3+-doped YAG nanoscintillator. Radiat Detect Technol Methods 7, 447–456 (2023). https://doi.org/10.1007/s41605-023-00397-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00397-x

Keywords

Navigation