Research of Efficient and Fast Scintillator Garnet Crystals: The Role of Ce4+ in Ce3+, Mg2+-Co-Doped Gd3Al2Ga3O12 from Spectroscopic and XANES Characterizations

  • Conference paper
  • First Online:
Light-Matter Interactions Towards the Nanoscale

Abstract

In this lecture, two main goals have been shown: first, the state-of-art of the inorganic scintillator materials used for many important applications and, secondly, the illustration of the dynamics of this field by giving spectroscopic and scintillation properties of the most advanced oxide scintillator Ce3+, Mg2+-co-doped Gd3Al2Ga3O12 (GAGG) garnet host, grown by using both the micro-pulling-down (μ-PD) and the Czochralski methods at the Tohoku University, Sendai. The adopted strategy for optimization of garnet scintillator composition in both, the defect engineering and band gap engineering of this research program gives us the opportunity to discuss on the role of Ce4+ ion which has always been a challenge for Ce3+-doped luminescent crystals. By analogy with the approach used for commercial Ce3+, Mg2+-co-doped-doped orthosilicates as Lu2SiO5 (LSO) and (Lu1−xYx)2SiO5 (LYSO), we confirm the creation of stable Ce4+ oxidation state and we evaluate the Ce3+/Ce4+ ratio of concentrations in Ce3+, Mg2+-co-doped Gd3Al2Ga3O12 (GAGG) garnet by XANES spectroscopy analysed at the Ce LIII threshold of the European Synchrotron Radiation Facility (ESRF) in Grenoble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Knoll GF (2010) Radiation detection and measurement, 4th edn. Wiley, New York

    Google Scholar 

  2. Nikl M, Yoshikawa A (2015) Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv Opt Mater 3(4):463–481

    Article  Google Scholar 

  3. Melcher C, Schweitzer JS (1992) Cerium-doped lutetium orthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci 39(4):502–505

    Article  ADS  Google Scholar 

  4. Kapusta M, Szupryczynski P, Melcher CL, Moszynski M, Balcerzyk M, Carey AA (2005) Nonproportionality and thermoluminescence of LSO:Ce. IEEE Trans Nucl Sci 52(4):1098–1104

    Article  ADS  Google Scholar 

  5. Spurrier MA, Szupryczynski P, Carey AA, Melcher CL (2008) Effects of Ca2+ co-do** on the scintillation properties of LSO:Ce. IEEE Trans Nucl Sci 55(3):1178–1182

    Article  ADS  Google Scholar 

  6. Lecoq P, Korzhik M (2002) New inorganic scintillation materials development for medical imaging. IEEE Trans Nucl Sci 49(4):1651–1654

    Article  ADS  Google Scholar 

  7. Moszynski M, Wolski D, Ludziejewski T, Kapusta M, Lempicki A, Brecher C (1997) Properties of the new LuAP:Ce scintillator. Nucl Instrum Methods Phys Res A 385:123–131

    Article  ADS  Google Scholar 

  8. Weber S, Christ D, Kurzeja M, Engels R, Kemmerling G, Halling H (2003) Comparison of LuYAP, LSO, BGO as scintillators for high resolution PET detectors. IEEE Trans Nucl Sci 50(5):1370–1372

    Article  ADS  Google Scholar 

  9. Conti M (2009) State of the art and challenges of time-of-flight PET. Phys Med 25:1–11

    Article  Google Scholar 

  10. Shah KS, Glodo J, Klugerman M, Moses WW, Derenzo SE, Weber MJ (2003) LaBr3:Ce scintillators for gamma-ray spectroscopy. IEEE Trans Nucl Sci 50(6):2410–2413

    Article  ADS  Google Scholar 

  11. Kramer KW, Dorenbos P, Gudel HU, van Eijk CWE (2006) Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials. J Mater Chem 16:2773–2278

    Article  Google Scholar 

  12. Alekhin M, de Haas J, Khodyuk I, Krämer K, Menge P, Ouspenski V, Dorenbos P (2014) Improvement of gamma-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-do**. Appl Phys Lett 104:161915–161918

    Google Scholar 

  13. Nikl M, Yoshikawa A, Kamada K, Nejezchleb K, Mares J, Blazez K (2013) Development of LuAG-based scintillator crystals. A review. Progr Cryst Growth Charact Mater 59:47–72

    Article  Google Scholar 

  14. Lupei V, Lupei A, Tiseanu C, Georgescu S, Stoicescu C, Nanau P (1995) High-resolution optical spectroscopy of YAG: Nd: A test for structural and distribution models. Phys Rev B 51:8–17

    Article  ADS  Google Scholar 

  15. Stanek CR, McClellan KJ, Levy MR, Grimes RW (2006) Extrinsic defect structure of RE3Al5O12 garnets. Phys Status Solidi B 243:R75–R77

    Article  ADS  Google Scholar 

  16. Nikl M, Vedda A, Fasoli M, Fontana I, Laguta V, Mihokova E, Pejchal J, Rosa J, Nejezchleb K (2007) Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator. Phys Rev B 76(19):195121

    Article  ADS  Google Scholar 

  17. Kamada K, Endo T, Tsutumi K, Yanagida T, Fujimoto Y, Fukabori A (2011) Composition engineering in cerium-doped (Lu,Gd)3(Ga, Al)5O12 single-crystal scintillators. Cryst Growth Des 11:4484–4490

    Article  Google Scholar 

  18. Kamada K, Yanagida T, Endo T, Tsutumi K, Usuki Y, Nikl M (2012) 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J Cryst Growth 352:88–90

    Article  ADS  Google Scholar 

  19. Kamada K, Kurosawa S, Prusa P, Nikl M, Kochurikhin V, Endo T, Tsutumi K, Sato H, Yokota Y, Sugiyama K, Yoshikawa A (2014) Cz grown 2-in. size Ce:Gd3(Al, Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Opt Mater 36:1942–1945

    Article  ADS  Google Scholar 

  20. Yoshikawa A, Nikl M, Boulon G, Fukuda T (2007) Challenge and study for develo** of novel single crystalline optical materials using micro-pulling-down method. Opt Mater 30:6–10

    Article  ADS  Google Scholar 

  21. Raukas M, Basun SA, van Schaik W, Yen WM, Happek U (1996) Luminescence efficiency of cerium doped insulators: the role of electron transfer processes. Appl Phys Lett 69:3300–3305

    Article  ADS  Google Scholar 

  22. Spurrier MA, Szupryczynski P, Yang K, Carey AA, Melcher CL (2008) Effects of Ca2+ co-do** on the scintillation properties of LSO:Ce. IEEE Trans Nucl Sci 55:1178–1182

    Article  ADS  Google Scholar 

  23. Blahuta S, Bessiere A, Viana B, Dorenbos P, Ouspenski V (2013) Evidence and consequences of Ce4+ in LYSO:Ce,Ca and LYSO:Ce,Mg single crystals for medical imaging applications. IEEE Trans Nucl Sci 60:3134–3141

    Article  ADS  Google Scholar 

  24. Liu S, Feng X, Zhou Z, Nikl M, Shi Y, Pan Y (2014) Effect of Mg2+ co-do** on the scintillation performance of LuAG:Ce ceramics. Phys Status Solidi RRL 8:105–109

    Article  Google Scholar 

  25. Tyagi M, Meng F, Koschan M, Donnald S, Rothfuss H, Melcher CL (2013) Effect of codo** on scintillation and optical properties of Ce doped Gd3Ga3Al2O12 scintillator. J Phys D Appl Phys 46:475302–475307

    Article  ADS  Google Scholar 

  26. Wu Y, Meng F, Li Q, Koschan M, Melcher CL (2014) Role of Ce4+ in the scintillation mechanism of co-doped Gd3Ga3Al2O12∶Ce. Phys Rev Appl 2:044009

    Article  ADS  Google Scholar 

  27. Kamada K, Nikl M, Kurosawa S, Beitlerova A, Nagura A, Shoji Y, Pejchal J, Ohashi Y, Yokota Y, Yoshikawa A (2015) Alkali earth co-do** effects on luminescence and scintillation properties of Ce-doped Gd3Al2Ga3O12 scintillator. Opt Mater 41:6

    Google Scholar 

  28. Kamada K, Shoji Y, Kochurikhin V, Nagura A, Okumura S, Yamamoto S, Yeom JY, Kurosawa S, Pejchal J, Yokota Y, Ohashi Y, Nikl M, Yoshino M, Yoshikawa A (2016) Large size Czochralski growth and scintillation properties of Mg2+ co-doped Ce:Gd3Ga3Al2O12. IEEE Trans Nucl Sci 63(2):443

    Article  ADS  Google Scholar 

  29. Dantelle G, Boulon G, Guyot Y, Testemale D, Guzik M, Kurosawa S, Kamada K, Yoshikawa A (2019) Research of efficient fast scintillators. Evidence and XANES characterization of Ce4+ in Ce3+, Mg2+-co-doped Gd3Al2Ga3O12 garnet crystals. Phys Status Solidi B 257:1900510–1900518

    Article  ADS  Google Scholar 

  30. Rotman SR, Tuller HL, Warde C (1992) Defect-property correlations in garnet crystals. VI. The electrical conductivity, defect structure, and optical properties of luminescent calcium and cerium-doped yttrium aluminum garnet. J Appl Phys 71:1209–1214

    Article  ADS  Google Scholar 

  31. Derdzyan MV, Hovhannesyan KL, Yeganyan AV, Sargsyan RV, Novikov A, Petrosyan AG, Dujardin C (2018) Dissimilar behavior of YAG:Ce and LuAG:Ce scintillator garnets regarding Li+ co-do**. CrystEngComm 20:1520–1526

    Article  Google Scholar 

  32. Tella M, Auffan M, Brousset L, Morel E, Proux O, Chanéac C, Angeletti B, Pailles C, Artells E, Santaella C, Rose J, Thiéry A, Bottero J-Y (2015) Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles. Environ Sci Nano 2:653–663

    Article  Google Scholar 

  33. https://bruceravel.github.io/demeter/

  34. Chewpraditkul W, Pattanaboonmee N, Sakthong O, Wantong K, Chewpraditkul W, Yoshikawa A, Kamada K, Kurosawa S, Szczesniak T, Moszynski M, Babin V, Nikl M (2019) Scintillation properties of Gd3Al2Ga3O12:Ce, Li and Gd3Al2Ga3O12:Ce, Mg single crystal scintillators: a comparative study. Opt Mater 92:181

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Boulon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boulon, G. et al. (2022). Research of Efficient and Fast Scintillator Garnet Crystals: The Role of Ce4+ in Ce3+, Mg2+-Co-Doped Gd3Al2Ga3O12 from Spectroscopic and XANES Characterizations. In: Cesaria, M., Calà Lesina, A., Collins, J. (eds) Light-Matter Interactions Towards the Nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2138-5_12

Download citation

Publish with us

Policies and ethics

Navigation