Log in

3D-printed highly porous and reusable chitosan monoliths for Cu(II) removal

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Removal of heavy metal pollution has received considerable research attention due to its severe effects on human health. In the present study, for the first time, a reusable monolithic 3D porous adsorbing filter was fabricated by integrating 3D printing technique with a natural adsorbent (chitosan), which is a low-cost and highly effective solution for heavy metal removal. The –NH2 and –OH functional groups found on the highly porous monoliths were capable of adsorbing metal ions. Further analyses revealed that the adsorption capacity increases with the filter’s surface area, with T = 25 °C and pH 5.5 representing the optimal working conditions. The maximum adsorption capacity of 13.7 mg/g (calculated by using the total mass) was measured for the filter with skewed hexagonal holes. The pseudo-first-order equation and Langmuir isotherm model presented a good fit to the experimental data, thus accurately describing the adsorption kinetics and the adsorption equilibrium. The monolithic chitosan-loaded filter exhibited a superior adsorption kinetics of 2.2 mg/(g min) for Cu(II) removal. Findings yielded by the desorption experiment also demonstrated that EDTA can desorb the metal ions from the monoliths, and its ~ 92% desorption capacity indicates high reusability. All results reported in this work indicate that 3D printing offers an alternative, cost-effective and facile approach for fabricating structured adsorbents with tunable structural and chemical properties for use in metal ion removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hu Y et al (2013) Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environ Sci Pollut Res 20(9):6150–6159

    Article  CAS  Google Scholar 

  2. Li Z et al (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  CAS  Google Scholar 

  3. Salomons W, Förstner U, Mader P (2012) Heavy metals: problems and solutions. Springer, Berlin

    Google Scholar 

  4. Franzetti A et al (2014) Biosurfactant use in heavy metal removal from industrial effluents and contaminated sites. In: Kosaric N, Sukan FV (eds) Biosurfactants: production and utilization—processes, technologies, and economics, vol 159. CRC Press, Boca Raton, pp 361–369

    Chapter  Google Scholar 

  5. Oncel M et al (2013) A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. J Environ Chem Eng 1(4):989–995

    Article  CAS  Google Scholar 

  6. Ahmed MJK, Ahmaruzzaman M (2016) A review on potential usage of industrial waste materials for binding heavy metal ions from aqueous solutions. J Water Process Eng 10:39–47

    Article  Google Scholar 

  7. Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  CAS  Google Scholar 

  8. Parga JR et al (2013) Removal of aqueous lead and copper ions by using natural hydroxyapatite powder and sulphide precipitation in cyanidation process. Sci Res 4(4):231–237

    Google Scholar 

  9. Reichert J, Binner JGP (1996) An evaluation of hydroxyapatite-based filters for removal of heavy metal ions from aqueous solutions. J Mater Sci 31(5):1231–1241. https://doi.org/10.1007/BF00353102

    Article  CAS  Google Scholar 

  10. Agboola O, Mokrani T, Sadiku R (2016) Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions. J Mater Sci 51(5):2499–2511. https://doi.org/10.1007/s10853-015-9562-3

    Article  CAS  Google Scholar 

  11. Karnib M et al (2014) Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50:113–120

    Article  CAS  Google Scholar 

  12. Sankararamakrishnan N, Jaiswal M, Verma N (2014) Composite nanofloral clusters of carbon nanotubes and activated alumina: an efficient sorbent for heavy metal removal. Chem Eng J 235:1–9

    Article  CAS  Google Scholar 

  13. Hua M et al (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331

    Article  CAS  Google Scholar 

  14. Mubarak N et al (2014) Removal of heavy metals from wastewater using carbon nanotubes. Sep Purif Rev 43(4):311–338

    Article  CAS  Google Scholar 

  15. Kırbıyık Ç, Pütün AE, Pütün E (2016) Comparative studies on adsorptive removal of heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost agro residue. Water Sci Technol 73(2):423–436

    Article  CAS  Google Scholar 

  16. Ribeiro C et al (2018) A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J Mater Sci 53(11):7976–7995. https://doi.org/10.1007/s10853-018-2150-6

    Article  CAS  Google Scholar 

  17. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4(4):361–377

    Article  CAS  Google Scholar 

  18. Ayoub A et al (2013) Novel hemicellulose–chitosan biosorbent for water desalination and heavy metal removal. ACS Sustain Chem Eng 1(9):1102–1109

    Article  CAS  Google Scholar 

  19. Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Biores Technol 160:129–141

    Article  CAS  Google Scholar 

  20. Chen T et al (2013) Performance analysis of Al2O3/water nanofluid with cationic chitosan dispersant. Adv Mater Sci Eng 2013:1–8

    Google Scholar 

  21. Kim K-J, Park J-W (2017) Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. J Mater Sci 52(2):843–857. https://doi.org/10.1007/s10853-016-0380-z

    Article  CAS  Google Scholar 

  22. Yang Q (2018) Removal and reuse of Ag nanoparticles by magnetic polyaniline/Fe3O4 nanofibers. J Mater Sci 53(12):8901–8908. https://doi.org/10.1007/s10853-018-2181-z

    Article  CAS  Google Scholar 

  23. Reddy DHK, Lee S-M (2013) Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Adv Coll Interface Sci 201–202:68–93

    Article  CAS  Google Scholar 

  24. Lu F, Astruc D (2018) Nanomaterials for removal of toxic elements from water. Coord Chem Rev 356:147–164

    Article  CAS  Google Scholar 

  25. Zhang N et al (2011) Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 49(3):827–837

    Article  CAS  Google Scholar 

  26. Prevot V, Tokudome Y (2017) 3D hierarchical and porous layered double hydroxide structures: an overview of synthesis methods and applications. J Mater Sci 52(19):11229–11250. https://doi.org/10.1007/s10853-017-1067-9

    Article  CAS  Google Scholar 

  27. Kuang S-P et al (2013) Preparation of triethylene-tetramine grafted magnetic chitosan for adsorption of Pb(II) ion from aqueous solutions. J Hazard Mater 260:210–219

    Article  CAS  Google Scholar 

  28. Dong C et al (2014) Synthesis of magnetic chitosan nanoparticle and its adsorption property for humic acid from aqueous solution. Colloids Surf, A 446:179–189

    Article  CAS  Google Scholar 

  29. Duffy E et al (2015) Hierarchical porous graphitic carbon monoliths with detonation nanodiamonds: synthesis, characterisation and adsorptive properties. J Mater Sci 50(19):6245–6259. https://doi.org/10.1007/s10853-015-9195-6

    Article  CAS  Google Scholar 

  30. Li Y et al (2016) Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction. Appl Catal B 199:412–423

    Article  CAS  Google Scholar 

  31. Huš S, Kolar M, Krajnc P (2016) Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions). J Chromatogr A 1437:168–175

    Article  CAS  Google Scholar 

  32. Zhang D et al (2017) Initiator-integrated 3D printing of magnetic object for remote controlling application. IEEE Trans Magn 99:1

    Google Scholar 

  33. Guo Q et al (2013) “Paintable” 3D printed structures via a post-ATRP process with antimicrobial function for biomedical applications. J Mater Chem B 1(48):6644

    Article  CAS  Google Scholar 

  34. Couck S et al (2017) CO2, CH4 and N2 separation with a 3DFD-printed ZSM-5 monolith. Chem Eng J 308:719–726

    Article  CAS  Google Scholar 

  35. Thakkar H et al (2016) 3D-printed zeolite monoliths for CO2 removal from enclosed environments. ACS Appl Mater Interfaces 8(41):27753–27761

    Article  CAS  Google Scholar 

  36. Thakkar H et al (2017) Formulation of aminosilica adsorbents into 3D-printed monoliths and evaluation of their CO2 capture performance. ACS Appl Mater Interfaces 9(8):7489–7498

    Article  CAS  Google Scholar 

  37. Kalsoom U, Nesterenko PN, Paull B (2018) Current and future impact of 3D printing on the separation sciences. Trends Anal Chem 105:492–502

    Article  CAS  Google Scholar 

  38. Thakkar H et al (2017) 3D-printed metal-organic framework monoliths for gas adsorption processes. ACS Appl Mater Interfaces 9(41):35908–35916

    Article  CAS  Google Scholar 

  39. Couck S et al (2018) 3D-printed SAPO-34 monoliths for gas separation. Microporous Mesoporous Mater 255:185–191

    Article  CAS  Google Scholar 

  40. Rezaei F et al (2017) MOF-74 and UTSA-16 film growth on monolithic structures and their CO2 adsorption performance. Chem Eng J 313:1346–1353

    Article  CAS  Google Scholar 

  41. Parra-Cabrera C et al (2018) 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors. Chem Soc Rev 47(1):209–230

    Article  CAS  Google Scholar 

  42. Zhou X, Liu C-J (2017) Three-dimensional printing for catalytic applications: current status and perspectives. Adv Func Mater 27(30):1701134

    Article  CAS  Google Scholar 

  43. Lee HS et al (2012) Reversible swelling of chitosan and quaternary ammonium modified chitosan brush layers: effect of pH and counter anion size and functionality. J Mater Chem 22(37):19605–19616

    Article  CAS  Google Scholar 

  44. Funk C et al (2012) Epoxy-functionalized surfaces for microarray applications: surface chemical analysis and fluorescence labeling of surface species. Surf Interface Anal 44(8):890–894

    Article  CAS  Google Scholar 

  45. Griffiths PR, De Haseth JA (2007) Fourier transform infrared spectrometry, vol 171. Wiley, Hoboken

    Book  Google Scholar 

  46. Milosavljević NB et al (2011) Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: FTIR, SEM/EDX, AFM, kinetic and equilibrium study. Colloids Surf A 388(1):59–69

    Article  CAS  Google Scholar 

  47. Zhou Y-T et al (2009) Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci 330(1):29–37

    Article  CAS  Google Scholar 

  48. He J, Lu Y, Luo G (2014) Ca(II) imprinted chitosan microspheres: an effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chem Eng J 244:202–208

    Article  CAS  Google Scholar 

  49. Shen D et al (2009) Adsorption kinetics and isotherm of anionic dyes onto organo-bentonite from single and multisolute systems. J Hazard Mater 172(1):99–107

    Article  CAS  Google Scholar 

  50. Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52

    Article  CAS  Google Scholar 

  51. Wu F-C, Tseng R-L, Juang R-S (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35(3):613–618

    Article  CAS  Google Scholar 

  52. Chen C-Y, Yang C-Y, Chen A-H (2011) Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin. J Environ Manage 92(3):796–802

    Article  CAS  Google Scholar 

  53. Chen A-H et al (2008) Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater 154(1):184–191

    Article  CAS  Google Scholar 

  54. Laus R et al (2010) Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J Hazard Mater 183(1):233–241

    Article  CAS  Google Scholar 

  55. Chang Y-C, Chen D-H (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci 283(2):446–451

    Article  CAS  Google Scholar 

  56. Wan M-W et al (2010) Adsorption of copper (II) and lead (II) ions from aqueous solution on chitosan-coated sand. Carbohydr Polym 80(3):891–899

    Article  CAS  Google Scholar 

  57. Yuwei C, Jianlong W (2011) Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem Eng J 168(1):286–292

    Article  CAS  Google Scholar 

  58. Yan H et al (2012) Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions. J Hazard Mater 229–230:371–380

    Article  CAS  Google Scholar 

  59. Salehi E et al (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319

    Article  CAS  Google Scholar 

  60. Bazargan-Lari R et al (2014) Removal of Cu(II) ions from aqueous solutions by low-cost natural hydroxyapatite/chitosan composite: equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 45(4):1642–1648

    Article  CAS  Google Scholar 

  61. Zhang Y et al (2014) Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydr Polym 101:392–400

    Article  CAS  Google Scholar 

  62. Zeng QR et al (2005) Recycling EDTA solutions used to remediate metal-polluted soils. Environ Pollut 133(2):225–231

    Article  CAS  Google Scholar 

  63. Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq 214:175–191

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful for the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Xerox UAC award and Research Accelerator Grant Program of the University of Western Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuquan Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., **ao, J., Guo, Q. et al. 3D-printed highly porous and reusable chitosan monoliths for Cu(II) removal. J Mater Sci 54, 6728–6741 (2019). https://doi.org/10.1007/s10853-019-03332-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03332-y

Navigation