Log in

Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Porous and fractal analysis on the permeability of nanofiltration membranes was investigated for the removal of metal ions. The permeability of a porous membranes used in wastewater treatment is strongly depended on its local geometry and connectivity, the size distribution of the pores available for flow. Fouling studies with two different membranes at three different pHs were carried out with manganese and magnesium. It was shown that the tighter membrane was less rougher and less fouled compared with the rougher membrane. NF90-2450 showed the highest degree of fouling. The X-ray diffraction showed that NF90-2540 consist of a pronounced diamond at the angle of 45 °C which was responsible for porosity. The threshold images were obtained from the scanning electron microscopy images with the use of Image J software confirmed that NF90-2540 has higher percentage porosity when compared with the percentage porosity of NF1540-3. An evaluation of the relationships between porosity and permeability for the fractal analysis by a box counting was done. The evaluation also confirmed that the lower fractal dimension corresponds to a lower value of porosity. The higher the pH, the lower the fractal dimension of the used membranes due to the blockage of pores. A higher value of fractal dimension of the used membrane at a lower pH corresponds to a lower rejection of the metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yu BM (2005) Fractal character for tortuous stream tubes in porous media. Chin Phys Lett 22(1):158–160

    Article  Google Scholar 

  2. Al-Mossawy MI, Demiral B, Raja DMA (2011) Foam dynamics in porous media and its applications in enhanced oil recovery: review. IJRRAS 7(4):351–359

    Google Scholar 

  3. Howell JR, Hall MJ, Ellzey JL (1996) Combustion of hydrocarbon fuels within porous inert media. Prog Energy Combust Sci 122:121–145. doi:10.1016/0360-1285(96)00001-9

    Article  Google Scholar 

  4. Kamal MM, Mohamad AA (2006) Combustion in porous media: a review. J Power Energy 220:487–508. doi:10.1243/09576509JPE169

    Article  Google Scholar 

  5. Wood S, Harris AT (2008) Porous burners for lean-burn applications. Prog Energy Combust Sci 34:667–684. doi:10.1016/j.pecs.2008.04.003

    Article  Google Scholar 

  6. Bowles J (1984) Physical and geotechnical properties of soil, 2nd edn. McGraw-Hill Book Company, New York

    Google Scholar 

  7. Shkolnikov V, Strickland DG, Fenning DP, Santiago JG (2010) Design and fabrication of porous polymer wick structures. Sens Actuators B 150:556–563. doi:10.1016/j.snb.2010.08.040

    Article  Google Scholar 

  8. Cuperus FP, Smolders CA (1991) Characterization of UF membranes: membrane characteristics and characterization techniques. Adv Colloid Interface Sci 34:135–173. doi:10.1016/0001-8686(91)80049-P

    Article  Google Scholar 

  9. Helwani Z, Wiheeb AD, Shamsudin IK, Kim J, Othman MR (2015) The effects of fractality on hydrogen permeability across meso-porous membrane. Heat Mass Transfer 51:751–758. doi:10.1007/s00231-014-1445-7

    Article  Google Scholar 

  10. Burggraaf AJ, Cot L (1996) Fundamentals of inorganic membranes science and technology, vol 4. Elsevier, Amsterdam

    Google Scholar 

  11. Kikkinides ES, Stoitsas KA, Zaspalis VT, Burganos VN (2004) Simulation of structural and permeation properties of multi-layer ceramic membranes. J Membr Sci 243:133–149. doi:10.1016/j.memsci.2004.06.019

    Article  Google Scholar 

  12. Mandelbrot BB (1982) The fractal geometry of nature. Freeman, New York, p 23

    Google Scholar 

  13. Pitchumani R, Ramakrishnan BA (1999) Fractal geometry model for evaluating permeabilities of porous performs used in liquid composite molding. Int J Heat Mass Transfer 42:2219–2232

    Article  Google Scholar 

  14. Zhang L-Z (2008) A fractal model for gas permeation through porous membranes. Int J Heat Mass Transfer 51:5288–5295. doi:10.1016/j.ijheatmasstransfer.2008.03.008

    Article  Google Scholar 

  15. Ibaseta N, Biscans B (2010) Fractal dimension of fumed silica: comparison of light scattering and electron microscope methods. Powder Technol 203:206–210. doi:10.1016/j.poetec.2010.05.010

    Article  Google Scholar 

  16. Yu BM (2001) Comments on a fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding. Int J Heat Mass Transfer 44:2787–2789

    Article  Google Scholar 

  17. Gmachowski L (2003) Transport properties of fractal aggregates calculated by permeability. Colloids Surf A 215:173–179. doi:10.1016/S0927-7757(02)00440-5

    Article  Google Scholar 

  18. Gmachowski L (2003) Mass- radius relation for fractal aggregates of polydisperse particles. Colloids Surf A 224:45–52. doi:10.1016/S0927-7757(03)00318-2

    Article  Google Scholar 

  19. Mandelbrot BB (1977) Fractal-form: chance and dimension, vol 1. Freeman, San Francisco

    Google Scholar 

  20. Meng FG, Zhang HM, Li YS, Zhang XW, Yang FL, **ao JN (2005) Cake layer morphology in microfiltration of activated sludge wastewater based on fractal analysis. Sep Purif Technol 44:250–257. doi:10.1016/j.seppur.2005.01.015

    Article  Google Scholar 

  21. Cai J, Perfect E, Cheng C-L, Hu X (2014) Generalized modeling of spontaneous imbibition based on Hagen-Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30:5142–5151. doi:10.1021/la5007204

    Article  Google Scholar 

  22. Kaye BH (1991) Characterizing the structure of fumed pigments using the concepts of fractal geometry. Part Part Syst Charact 9:63–71. doi:10.1002/ppsc.19910080112

    Article  Google Scholar 

  23. Kaye BH (1993) Applied fractal geometry and the fineparticle specialist. Part I: Rugged boundaries and rough surfaces. Part Part Syst Charact 10:99–110. doi:10.1002/ppsc.19930100302

    Article  Google Scholar 

  24. Xu L, Zhu QX, Lu SQ (2000) Study on the cake structure of cross-flow micro-filtration. In: Proceedings the 8th World filtration Congress, London, p 449

  25. Syvitski JPM (2007) Principle, methods and applications of particle size analysis. Cambridge University Press, New York, p 99

    Google Scholar 

  26. Meng F, Zhang H, Li Y, Zhang Z, Yang F (2005) Application of fractal permeation model to investigate membrane fouling in membrane bioreactor. J Membr Sci 262:107–116. doi:10.1016/j.memsci.2005.04.013

    Article  Google Scholar 

  27. Akbari A, Homayonfal M, Jabbari V (2010) Synthesis and characterization of composite polysulfonemembranes for desalination in nanofiltration technique. Water Sci Technol 62(11):2655–2663. doi:10.2166/wst.2010.512

    Article  Google Scholar 

  28. Alayemieka E, Lee S (2013) Modification of polyamide membrane surface with chlorine dioxide solutions of differing pH. Desalin Water Treat 45:84–90

    Article  Google Scholar 

  29. Said MM, El-Aassar AHM, Kotp YH, Shawky HA, Abdel Mottaleb MSA (2013) Performance assessment of prepared polyamide thin film composite membrane for desalination of saline groundwater at Mersa Alam-Ras Banas, Red Sea Coast, Egypt. Desalin Water Treat 51:4927–4937. doi:10.1080/19443994.2012.692013

    Article  Google Scholar 

  30. Omidvar M, Mousavi SM, Soltanieh M, Safekordi AA (2014) Preparation and characterization of poly (ethersulfone) nanofiltration membranes for amoxicillin removal from contaminated water. J Environ Sci Eng 12(18):1–9. doi:10.1186/2052-336X-12-18

    Google Scholar 

  31. Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM (2007) WSXM: software for scanning probe microscopy and tool for nanotechnology. Rev Sci Instrum 78:013705–013708. doi:10.1063/1.2432410

    Article  Google Scholar 

  32. Pontié M, Thekkedath A, Kecili K, Dach H, De Nardi F, Castaing JB (2012) Clay filter-aid in ultrafiltration (UF) of humic acid solution. Desalin 292:73–86. doi:10.1016/j.desal.2012.02.011

    Article  Google Scholar 

  33. Karan S, Samitsu S, Peng X, Kurashime K, Ichinose I (2012) Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335:444–447. doi:10.1126/science.1212101

    Article  Google Scholar 

  34. Khulbe KC, Feng CY, Matsuura TS (2008) Synthetic polymeric membranes characterization by atomic force microscopy, vol 2. Springer, Berlin

    Google Scholar 

  35. Song L, Johnson PR, Elimelech M (1994) Kinetics of colloid deposition onto heterogeneously charged surfaces in porous media. Environ Sci Technol 28:1164–1171. doi:10.1021/es00055a030

    Article  Google Scholar 

  36. Vrijenhoek EM, Hong S, Elimelech M (2001) Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J Membr Sci 188:115–128. doi:10.1016/S0375-7688(01)00376-3

    Article  Google Scholar 

  37. Bowen WR, Doneva TA (2000) Atomic force microscopy studies of membranes: effect of surface roughness on double layer interaction and particle adhesion. J Colloid Interface Sci 229(2):544–549. doi:10.1016/jcis.2000.6997

    Article  Google Scholar 

  38. Bowen WR, Hilal N, Lovitt RW, Wright CJ (1998) A new technique for membrane characterization: direct measurement of the force of adhesion of a single particle using atomic force microscopic. J Membr Sci 139(2):269–274

    Article  Google Scholar 

  39. Yu B, Cheng P (2002) A fractal permeability model for bi-dispersed porous media. Int J Heat Mass Transfer 45:2983–2993

    Article  Google Scholar 

  40. Alpatova A, Verbych S, Bryk M, Nigmatullin R, Hilal N (2004) Ultrafiltration of water containing natural organic matter: heavy metal removing in the hybrid complexation-ultrafiltration process. Sep Purif Technol 40(2):155–162. doi:10.1016/j.seppur.2004.02.003

    Article  Google Scholar 

  41. Lin Y-L (2013) Effect of physiochemical properties of nanofiltration membranes on the rejection of small organic DBP precursors. J Environ Eng 139:127–136. doi:10.1061/(ASCE)EE.1943-7870.0000623

    Article  Google Scholar 

  42. Chaudhari LB, Murthy ZVP (2008) Removal of nickel and cadmium ions from aqueous waste by a nanofiltration. J Environ Res Dev 3:400–406

    Google Scholar 

  43. Vanysek P (2005) Ionic conductivity and diffusion at infinite dilution in: CRC handbook of chemistry and physics, vol 5, 90th edn. CRC Press, Boca Raton

    Google Scholar 

  44. Mohammad AW, Othaman R, Hilal N (2004) Potential use of nanofiltration membranes in treatment of industrial wastewater from Ni-P electroless plating. Desalin 168:241–252. doi:10.1016/j.desal.2004.07.004

    Article  Google Scholar 

  45. Agboola O, Maree J, Mbaya R, Kolesnikov A, Sadiku R, Verliefde A, D’Haes A (2015) Microscopical characterization of nanofiltration membranes for the removal of nickel ions from aqueous solution. Korean J Chem Eng 32(4):731–742. doi:10.1007/s11814-014-0290-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluranti Agboola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agboola, O., Mokrani, T. & Sadiku, R. Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions. J Mater Sci 51, 2499–2511 (2016). https://doi.org/10.1007/s10853-015-9562-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9562-3

Keywords

Navigation