Log in

Facile synthesis of hydrous zirconia-impregnated chitosan beads as a filter medium for efficient removal of phosphate from water

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The removal and recovery of phosphate from water using adsorption technology require that the adsorbent material is easily separable from treated water. Continuous efforts are still awaited to develop additional efficient phosphate adsorbents that are economical to fabricate. In this study, hydrous zirconia-impregnated chitosan beads (HZCB) containing different Zr/chitosan ratios were synthesized using a facile scheme. We found that HZCB with a Zr/amine molar ratio of ~ 1 (HZCB-1) possessed excellent stability and phosphate removal performance. This optimized material was characterized with XRD, SEM, FTIR, XPS, specific surface area and point of zero charge measurements. The maximum adsorption capacity was 42.02 mg/g (at pH ~ 6.7). The adsorption kinetics were best described by a pseudosecond-order model, and the rate constant of HZCB-1 was much lower than that of its powder but was similar to the commercial bead product Ferrolox. The removal of phosphate depended substantially upon pH and was enhanced by lowering the pH. Good selectivity of HZCB-1 for phosphate was observed, although the coexistence of sulfate produced a significant negative effect. Direct coordination of phosphate to Zr atoms by replacing hydroxyls was the dominant adsorption mechanism (~ 85%), while chitosan also contributed to phosphate removal (~ 15%). Adsorbed phosphate was successfully eluted by an NaOH solution, and the material obtained after desorption and regeneration was able to be repeatedly used. The results of column studies indicated that this material could be implemented in long-term application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation Project (52170166) and the HITACHI Chemical Co., Ltd (Grant No 2020-07).

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 52170166) and the HITACHI Chemical Co., Ltd of Japan (Grant No. 2020-07).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: conceptualization, investigation, writing-original draft; TL: investigation, validation; DW: supervision, writing-reviewing and editing.

Corresponding author

Correspondence to Deyi Wu.

Ethics declarations

Competing interests

“The authors have no relevant financial or non-financial interests to disclose.”

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 737 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Liu, T. & Wu, D. Facile synthesis of hydrous zirconia-impregnated chitosan beads as a filter medium for efficient removal of phosphate from water. Cellulose 29, 8749–8768 (2022). https://doi.org/10.1007/s10570-022-04813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-022-04813-1

Keywords

Navigation