Log in

Hierarchical porous graphitic carbon monoliths with detonation nanodiamonds: synthesis, characterisation and adsorptive properties

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The addition of nano-carbons to composite materials is an area of significant research interest, when their addition results in improved properties. This work reports on the use of detonation nanodiamond (DND) in the preparation of porous carbon monoliths and an investigation of the properties of the final carbon–nanocarbon composite material. Porous carbon–nanodiamond (CND) monoliths, with macro-, meso- and micropores were prepared by carbonisation of a resorcinol-formaldehyde (RF) polymeric rod with an Fe(III) catalyst and spherical silica template. Pore characteristics and BET surface areas were determined from N2 isotherms, with surface areas in the range of 214–461 m2 g−1, depending on DND content. SEM imaging further confirmed the hierarchical pore structure present, where there was a trimodal structure for monoliths containing nanodiamond following pyrolysis up to 900 °C. Thermogravimetric analysis, TEM imaging, energy dispersive X-ray electron spectroscopy and Raman spectroscopy were employed to evaluate the properties of this new composite material. The adsorptions of methylene blue (MB) and neutral red (NR) dyes from water onto the composite monoliths were investigated and compared with activated carbon in order to further evaluate their physical and adsorptive properties. CND materials adsorb these two cationic dyes more effectively than activated carbon, due to a more accessible pore network, and DND content had a direct effect on adsorption capacities for the dyes. The adsorption isotherms coincided with Langmuir and Freundlich adsorption models. Maximum adsorption capacities of 599 and 284 mg g−1 were achieved for NR and MB, respectively, on the CND composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ruo-wen FU, Zheng-hui LI, Ye-ru L, Eng LI, Eei XU, Ding-cai WU (2011) Hierarchical porous carbons: design: preparation and performance in energy storage. New Carbon Mater 26:171–179

    Article  Google Scholar 

  2. Upare DP, Yoon S, Lee CW (2011) Nano-structured porous carbon materials for catalysis and energy storage. Korean J Chem Eng 28:731–743

    Article  Google Scholar 

  3. Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ Sci Pollut Res 20:2828–2843

    Article  Google Scholar 

  4. Pereira L (2008) Porous graphitic carbon as a stationary phase in hplc: theory and applications. J Liquid Chromatogr Relat Technol 31:1687–1731

    Article  Google Scholar 

  5. Carneiro MC, Puignou L, Galceran MT (2000) Comparison of silica and porous graphitic carbon as solid phase extraction materials for the analysis of cationic herbicides in water by liquid chromatography and capillary electrophoresis. Anal Chim Acta 408:263–269

    Article  Google Scholar 

  6. Hennion MC (2000) Graphitized carbons for solid phase extraction. J Chromatogr A 885:73–95

    Article  Google Scholar 

  7. Eltmimi AH, Barron L, Rafferty A, Hanrahan JP, Fedyanina O, Nesterenko E, Nesterenko PN, Paull B (2010) Preparation, characterisation and modification of carbon-based monolithic rods for chromatographic applications. J Sep Sci 33:1231–1243

    Google Scholar 

  8. Liang C, Dai S, Guichon GA (2003) Graphitized carbon monolithic column. Anal Chem 75:4904–4912

    Article  Google Scholar 

  9. He X, Male KB, Nesterenko PN, Brabazon D, Paull B, Luong JHT (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Interfaces 5:8796–8804

    Article  Google Scholar 

  10. Kim YS, Guo XF, Kim GJ (2010) Synthesis of carbon monolith with bimodal meso/macroscopic pore structure and its application in asymmetric catalysis. Catal Today 150:91–99

    Article  Google Scholar 

  11. Garcia-Gomez A, Miles P, Centeno TA, Rojo JM (2010) Why carbon monoliths are better supercapacitor electrodes than compacted pellets. Electrochem Solid State Lett 13:112–114

    Article  Google Scholar 

  12. Guichon G (2007) Monolithic columns in high-performance liquid chromatography. J Chromatogr A 1168:101–168

    Article  Google Scholar 

  13. Kilduff JE, Karanfil T, Chin Y-P, Weber WJ (1996) Adsorption of natural organic polyelectrolytes by activated carbon: a size-exclusion chromatography study. Environ Sci Technol 30:1336–1343

    Article  Google Scholar 

  14. Taguchi A, Smått JH, Lindén M (2003) Carbon monoliths possessing a hierarchical fully interconnected porosity. Adv Mater 15:1209–1211

    Article  Google Scholar 

  15. Nesterenko EP, Nesterenko PN, Connolly D, He X, Floris P, Duffy E, Paull B (2013) Nano-particle modified stationary phases for high-performance liquid chromatography. Analyst 138:4229–4254

    Article  Google Scholar 

  16. Herrera-Herrera AV, Gonzalez-Curbelo MA, Hernández-Borges J, Rodríguez-Delgado MA (2012) Carbon nanotubes applications in separation science: a review. Anal Chim Acta 734:1–30

    Article  Google Scholar 

  17. Scida K, Stege PW, Haby G, Messina GA, Garcia CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691:6–17

    Article  Google Scholar 

  18. Valcarel M, Cardenas S, Simonet BM, Moliner-Martinez Y, Lucena R (2008) Carbon nanostructures as sorbent materials in analytical processes. TrAC 27:34–43

    Google Scholar 

  19. Namera A, Nakamoto A, Saito T, Miyazaki S (2011) Monolith as a new sample preparation material: recent devices and applications. J Sep Sci 34:901–924

    Article  Google Scholar 

  20. Moreno-Castilla C, Perez-Cadenas AF (2010) Carbon-based honeycomb monoliths for environmental gas-phase applications. Materials 3:1203–1227

    Article  Google Scholar 

  21. Knox JH, Gilbert MT (1979) US Patent 4263268

  22. Saleh TA, Gupta VK (2014) Processing methods, characteristics and adsorption behaviour of tire derived carbons: a review. Adv Colloid Interface Sci 211:93–101

    Article  Google Scholar 

  23. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  Google Scholar 

  24. Liu F, Xu Z, Wan H, Wan Y, Zheng S, Zhu D (2011) Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon. Environ Toxicol Chem 30:793–800

    Article  Google Scholar 

  25. Han S, Sohn K, Hyeon T (2000) Fabrication of new nanoporous carbons through silica templates and their application to the adsorption of bulky dyes. Chem Mater 12:3337–3341

    Article  Google Scholar 

  26. Sevilla M, Fuertes AB (2013) Fabrication of porous carbon monoliths with a graphitic framework. Carbon 56:155–166

    Article  Google Scholar 

  27. Sakintuna B, Yürüm Y (2005) Templated porous carbons: a review article. Ind Eng Chem Res 44:2893–2902

    Article  Google Scholar 

  28. Alvarez S, Fuertes AB (2007) Synthesis of macro/mesoporous silica and carbon monoliths by using a commercial polyurethane foam as sacrificial template. Mater Lett 61:2378–2381

    Article  Google Scholar 

  29. Tao S, Wang Y, Shi D, An Y, Qiu J, Zhao Y, Cao Y, Zhang X (2014) Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure. J Mater Chem A 2:12785–12791

    Article  Google Scholar 

  30. He X, Nesterenko EP, Nesterenko PN, Brabazon D, Zhou L, Glennon JD, Luong JHT, Paull B (2013) Fabrication and characterization of nanotemplated carbon monolithic material. ACS Appl Mater Interfaces 5:8572–8580

    Article  Google Scholar 

  31. Duffy E, He X, Nesterenko EP, Dey A, Krishnamurthy S, Brabazon D, Nesterenko PN, Paull B (2015) Thermally controlled growth of carbon onions within porous graphitic carbon-detonation nanodiamond monolithic composites. RSC Adv 5:22906–22915

    Article  Google Scholar 

  32. Nesterenko PN, Haddad PR (2010) Diamond-related materials as potential new media in separation science. Anal Bioanal Chem 396:205–211

    Article  Google Scholar 

  33. Mochalin VM, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23

    Article  Google Scholar 

  34. Krueger A (2008) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20:2445–2449

    Article  Google Scholar 

  35. Peristyy AA, Fedyanina O, Paull B, Nesterenko PN (2014) Diamond based adsorbents and their application in chromatography. J Chromatogr A 1357:68–86

    Article  Google Scholar 

  36. Wang DH, Tan L-S, Huang H, Dai L, Osawa E (2009) In-situ nanocomposite synthesis: arylcarbonylation and grafting of primary diamond nanoparticles with a poly(ether-ketone) in polyphosphoric acid. Macromolecules 42:114–124

    Article  Google Scholar 

  37. Shenderova O, Jones C, Borjanovic V, Hens S, Cunningham G, Moseenkov S, Kuznetsov V, McGuire G (2008) Detonation nanodiamond and onion-line carbon: applications in composites. Physica Status Solidi (a) 205:2245–2251

    Article  Google Scholar 

  38. Manandhar S, Roder PB, Hanson JL, Lim M, Smith BE, Mann A, Pauzauskie PJ (2014) Rapid sol-gel synthesis of nanodiamond aerogel. J Mater Res 29:2905–2911

    Article  Google Scholar 

  39. Ostrovidova GU, Makeev AV, Biryukov AV, Gordeev SK (2003) Carbon nanocomposite materials as medicinal depot. Mater Sci Eng C 23:377–381

    Article  Google Scholar 

  40. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27:227–356

    Article  Google Scholar 

  41. Choma J, Jedynak K, Fahrenholz W, Ludwinowicz J, Jaroniec M (2014) Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. Appl Surf Sci 289:592–600

    Article  Google Scholar 

  42. Sajad M, Kazemzad M, Hosseinnia A (2014) Preparation of activated carbon monolith by application of phenolic resins as carbon precursors. Funct Mater Lett 7:1450035

    Article  Google Scholar 

  43. Robertson C, Mokaya R (2013) Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage. Microporous Mesoporous Mater 179:151–156

    Article  Google Scholar 

  44. Kipling JJ, Wilson RB (1960) Adsorption of methylene blue in the determination of surface areas. J Appl Chem 10:109–113

    Article  Google Scholar 

  45. Los JM, Tompkins CK (1956) Adsorption of methylene blue on a positively charged mercury surface. J Chem Phys 24:630

    Article  Google Scholar 

  46. Taha-Tijerina JJ, Narayanan TN, Tiwary CS, Lozano K, Chipara M, Ajayan PM (2014) Nanodiamond-based thermal fluids. ACS Appl Mater Interfaces 6:4778–4785

    Article  Google Scholar 

  47. Branson BT, Beauchamp PS, Beam JC, Lukehart CM, Davidson JL (2013) Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano 7:3183–3189

    Article  Google Scholar 

  48. Barnard AS (2008) Self-assembly in nanodiamond agglutinates. J Mater Chem 18:4038–4041

    Article  Google Scholar 

  49. Duffy E, Mitev D, Kazarian AA, Nesterenko PN, Paull B (2014) Separation and characterisation of detonation nanodiamond by capillary zone electrophoresis. Electrophoresis 35:1864–1872

    Article  Google Scholar 

  50. Kuznetsov VL, Chuvilin AL, Butenko YV, Mal’kov IY, Titov VM (1994) Onion-like carbon from ultra-disperse diamond. Chem Phys Lett 222:343–348

    Article  Google Scholar 

  51. Chen J, Deng SZ, Chen J, Yu ZX, Xu NS (1994) Graphitization of nanodiamond powder annealed in argon ambient. Appl Phys Lett 74:3651–3653

    Article  Google Scholar 

  52. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publishers, London

    Book  Google Scholar 

  53. Ko T-H, Kuo W-S, Chang Y-H (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81:1084–1089

    Article  Google Scholar 

  54. Batsanov SS, Lesnikov EV, Dan’kin DA, Balakhanov DM (2014) Water shells of diamond nanoparticles in colloidal solutions. Appl Phys Lett 104:133105

    Article  Google Scholar 

  55. Fang XW, Mao JD, Levin EM, Schmidt-Rohr K (2009) Nonaromatic core-shell structure of nanodiamond from solid-state NMR spectroscopy. J Am Chem Soc 131:1426–1435

    Article  Google Scholar 

  56. Ko TH, Kuo WS, Lu YR (2000) The influence of post-cure on properties of carbon/phenolic resin cured composites and their final carbon/carbon composites. Polym Compos 21:96–103

    Article  Google Scholar 

  57. Mitev DM, Townsend AT, Paull B, Nesterenko PN (2014) Microwave-assisted purification of detonation nanodiamond. Diam Relat Mater 48:37–46

    Article  Google Scholar 

  58. Xu NS, Chen J, Deng SZ (2002) Effect of heat treatment on the properties of nano-diamond under oxygen and argon ambient. Diam Relat Mater 11:249–256

    Article  Google Scholar 

  59. Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  60. Ferrari AC, Robertson J (2000) Interpretation of raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  Google Scholar 

  61. Yuan X, Shu-** Z, Wei X, Hong-You C, **ao-Dong D, **n-Mei L, Zi-Feng Y (2007) Aqueous dye adsorption on ordered mesoporous carbons. J Colloid Interface Sci 310:83–89

    Article  Google Scholar 

  62. Wu F-C, Tseng R-L, Juang R-S (2005) Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water. Sep Purif Technol 47:10–19

    Article  Google Scholar 

  63. Dabrowski A (2001) Adsorption—from theory to practice. Adv Colloid Interface Sci 93:135–224

    Article  Google Scholar 

  64. Wang S, Wei J, Lv S, Guo Z, Jiang F (2013) Removal of organic dyes in environmental water onto magnetic-sulfonic graphene nanocomposite. CLEAN 41:751–764

    Google Scholar 

  65. Desta MB (2013) Batch sorption experiments: langmuir and freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis Tef) agricultural waste. J Thermodyn 2013:375830

    Google Scholar 

  66. Poots VJP, McKay G, Healy JJ (1978) Removal of basic dye from effluent using wood as an adsorbent. J Water Pollut Control F 50:926–935

    Google Scholar 

  67. Hall KR, Eagleton LC, Acrivos A, Vermeulen T (1966) Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundamen 5:212–223

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Australian Research Council for the financial support in the form of Australian Research Council Discovery Grants DP110102046 and DP150102608. E.D. would also like to thank Dr. Ekaterina P. Nesterenko and Mrs. Heather Davies for technical assistance. The authors also acknowledge the technical support imaging materials received from Dr. Satheesh Krishnamurthy (TEM), Dr. Karsten Goemann and Dr. Sandrin Feig (SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett Paull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffy, E., He, X., Nesterenko, P.N. et al. Hierarchical porous graphitic carbon monoliths with detonation nanodiamonds: synthesis, characterisation and adsorptive properties. J Mater Sci 50, 6245–6259 (2015). https://doi.org/10.1007/s10853-015-9195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9195-6

Keywords

Navigation