Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder

  • Reference work entry
  • First Online:
Systems Biology of Free Radicals and Antioxidants
  • 339 Accesses

Abstract

Understanding the complex and multifaceted nature of bipolar disorder (BD) pathophysiology has recently expanded to include mitochondrial dysfunction and oxidative stress. Evidence of irregularities in brain energy metabolism, mitochondrial DNA mutations, and mitochondrial gene expression suggests an underlying deficiency in processes of oxidative phosphorylation, which primarily occurs through the mitochondrial electron transport chain. This is thought to be associated with overproduction of reactive oxygen species that results in increased oxidative damage in proteins, lipids, and nucleic acids in the brains of BD patients. Maladaptive oxidative modifications of these cellular macromolecules may be associated with impaired synaptic neuroplasticity and the development of functional abnormalities in the brain. Also discussed in this chapter is the research highlighting antioxidative properties of existing mood-stabilizing drugs, with considerations of novel therapeutic treatments for BD through the alleviation of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

4-HNE:

4-Hydroxynonenal

ACC:

Anterior cingulate cortex

BD:

Bipolar disorder

CK:

Creatine kinase

ETC:

Electron transport chain

Li+ :

Lithium

MRS:

Magnetic resonance spectroscopy

mtDNA:

Mitochondrial DNA

PCr:

Phosphocreatine

PFC:

Prefrontal cortex

PME:

Phosphomonoester

ROS:

Reactive oxygen species

VPA:

Valproate

References

  • Aliyazicioglu R, Kural B, Colak M, Karahan SC, Ayvaz S, Deger O (2007) Treatment with lithium, alone or in combination with olanzapine, relieves oxidative stress but increases atherogenic lipids in bipolar disorder. Tohoku J Exp Med 213:79–87

    Article  CAS  PubMed  Google Scholar 

  • Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex: the evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935:107–117

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, Cunha AB, Cereser KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Goncalves CA (2007a) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  • Andreazza AC, Frey BN, Erdtmann B, Salvador M, Rombaldi F, Santin A, Goncalves CA, Kapczinski F (2007b) DNA damage in bipolar disorder. Psychiatry Res 153:27–32

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  • Bachmann RF, Wang Y, Yuan P, Zhou R, Li X, Alesci S, Du J, Manji HK (2009) Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage. Int J Neuropsychopharmacol 12:805–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benes FM, Vincent SL, Todtenkopf (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50:395–406

    Article  CAS  PubMed  Google Scholar 

  • Benes FM, Matzilevich D, Burke RE, Walsh J (2006) The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 11:241–251

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder – a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–475

    Article  CAS  PubMed  Google Scholar 

  • Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S, Hewitt K, Allwang C, Cobb H, Bush AI, Schapkaitz I, Dodd S, Malhi GS (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord (in press)

    Google Scholar 

  • Berridge MJ (2012) Dysregulation of neural calcium signaling in Alzheimer disease, bipolar disorder and schizophrenia. Prion 6(5) [Epub ahead of print]

    Google Scholar 

  • Beyer JL, Krishnan KR (2002) Volumetric brain imaging findings in mood disorders. Bipolar Disord 4:89–104

    Article  PubMed  Google Scholar 

  • Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22:5840–5847

    CAS  PubMed  Google Scholar 

  • Browne SE, Bowling AC, MacGarvey U, Baik MJ, Berger SC, Muqit M, Bird ED, Beal MF (1997) Oxidative damage and metabolic dysfunction in Huntington’s disease: selective vulnerability of the basal ganglia. Ann Neurol 41:646–653

    Article  CAS  PubMed  Google Scholar 

  • Buttner N, Bhattacharyya S, Walsh J, Benes FM (2007) DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 93:33–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2000) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18:367–381

    Article  CAS  PubMed  Google Scholar 

  • Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML (2001) Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35:296–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen C-H, Suckling J, Lennox BR, Ooi C, Bullmore ET (2011) A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 13:1–15

    Article  CAS  PubMed  Google Scholar 

  • Cheng R, Juo SH, Loth JE, Nee J, Iossifov I, Blumenthal R, Sharpe L, Kanyas K, Lerer B, Lilliston B, Smith M, Trautman K, Gilliam TC, Endicott J, Baron M (2006) Genome-wide linkage scan in a large bipolar disorder sample from the National Institute of Mental Health genetics initiative suggests putative loci for bipolar disorder, psychosis, suicide, and panic disorder. Mol Psychiatry 11:252–260

    Article  CAS  PubMed  Google Scholar 

  • Chou YH, Wang SJ, Lin CL, Mao WC, Lee SM, Liao M (2010) Decreased brain serotonin transporter binding in the euthymic state of bipolar I but not bipolar II disorder: a SPECT study. Bipolar Disord 12:312–318

    Article  PubMed  Google Scholar 

  • Clark L, Chamberlain SR, Sahakian BJ (2009) Neurocognitive mechanisms in depression: implications for treatment. Annu Rev Neurosci 32:57–74

    Article  CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11:787–806

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Shao L, Young LT, Wang JF (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    Article  CAS  PubMed  Google Scholar 

  • de Vasconcellos AP, Nieto FB, Crema LM, Diehl LA, de Almeida LM, Prediger ME, da Rocha ER, Dalmaz C (2006) Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochem Res 31:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Dean OM, van den Buuse M, Bush AI, Copolov DL, Ng F, Dodd S, Berk M (2009) A role for glutathione in the pathophysiology of bipolar disorder and schizophrenia? Animal models and relevance to clinical practice. Curr Med Chem 16:2965–2976

    Article  CAS  PubMed  Google Scholar 

  • Deicken RF, Fein G, Weiner MW (1995) Abnormal frontal lobe phosphorus metabolism in bipolar disorder. Am J Psychiatry 152:915–918

    CAS  PubMed  Google Scholar 

  • Detera-Wadleigh SD, Badner JA, Berrettini WH et al (1999) A high-density genome scan detects evidence for a bipolar-disorder susceptibility locus on 13q32 and other potential loci on 1q32 and 18p11.2. Proc Natl Acad Sci U S A 96:5604–5609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diehl DJ, Gershon S (1992) The role of dopamine in mood disorders. Compr Psychiatry 33:115–120

    Article  CAS  PubMed  Google Scholar 

  • Dodd S, Dean O, Copolov DL, Malhi GS, Berk M (2008) N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther 8:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Douglas PM, Dillin A (2010) Protein homeostasis and aging in neurodegeneration. J Cell Biol 190:719–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dubovsky SL, Murphy J, Christiano J, Lee C (1992) The calcium second messenger system in bipolar disorders: data supporting new research directions. J Neuropsychiatry Clin Neurosci 4:3–14

    CAS  PubMed  Google Scholar 

  • Eastwood SL, Harrison PJ (2001) Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55:569–578

    Article  CAS  PubMed  Google Scholar 

  • Esterling LE, Cox Matise T, Sanders AR, Yoshikawa T, Overhauser J, Gershon ES, Moskowitz MT, Detera-Wadleigh SD (1997) An integrated physical map of 18p11.2: a susceptibility region for bipolar disorder. Mol Psychiatry 2:501–504

    Article  CAS  PubMed  Google Scholar 

  • Eyerman DJ, Yamamoto BK (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J Neurochem 103:1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  CAS  PubMed  Google Scholar 

  • Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31(5):326–332

    PubMed Central  PubMed  Google Scholar 

  • Fukami G, Hashimoto K, Koike K, Okamura N, Shimizu E, Iyo M (2004) Effect of antioxidant N-acetyl-L-cysteine on behavioral changes and neurotoxicity in rats after administration of methamphetamine. Brain Res 1016:90–95

    Article  CAS  PubMed  Google Scholar 

  • Fullerton JM, Tiwari Y, Agahi G, Heath A, Berk M, Mitchell PB, Schofield PR (2010) Assessing oxidative pathway genes as risk factors for bipolar disorder. Bipolar Disord 12:550–556

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14:123–130

    Article  CAS  PubMed  Google Scholar 

  • Giniatullin AR, Darios F, Shakirzyanova A, Davletov B, Giniatullin R (2006) SNAP25 is a presynaptic target for the depressant action of reactive oxygen species on transmitter release. J Neurochem 98:1789–1797

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 441:157–160

    Article  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large scale DNA microarray analysis. Hum Mol Genet 14:241–253

    Article  CAS  PubMed  Google Scholar 

  • Jornada LK, Valvassori SS, Steckert AV, Moretti M, Mina F, Ferreira CL, Arent CO, Dal-Pizzol F, Quevedo J (2011) Lithium and valproate modulate antioxidant enzymes and prevent ouabain-induced oxidative damage in an animal model of mania. J Psychiatr Res 45:162–168

    Article  PubMed  Google Scholar 

  • Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PV, Kauer-Sant’Anna M, Klamt F, Moreira JC, de Bittencourt Pasquali MA, Fries GR, Quevedo J, Gama CS, Post R (2011) Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res 45:156–161

    Article  PubMed  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31:125–133

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S (1995) Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 25:557–566

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Stine OC, McMahon FJ, Crowe RR (1997) Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 42:871–875

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Inubushi T, Kato N (1998) Magnetic resonance spectroscopy in affective disorders. J Neuropsychiatry Clin Neurosci 10:133–147

    CAS  PubMed  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  • Lai JS, Zhao C, Warsh JJ, Li PP (2006) Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 539:18–26

    Article  CAS  PubMed  Google Scholar 

  • MacDonald ML, Naydenov A, Chu M, Matzilevich D, Konradi C (2006) Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord 8:255–264

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva VR, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes PV, Dean OM, Bush AI, Copolov DL, Malhi GS, Kohlmann K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Berk M (2011) N-acetyl cysteine add-on treatment for bipolar II disorder: a subgroup analysis of a randomized placebo-controlled trial. J Affect Disord 129:317–320

    Article  CAS  PubMed  Google Scholar 

  • Mann VM, Cooper JM, Krige D, Daniel SE, Schapira AH, Marsden CD (1992) Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 115(Pt 2):333–342

    Article  PubMed  Google Scholar 

  • Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Merikangas KR, Akiskal HS, Angst J, Greenberg PE, Hirschfeld RM, Petukhova M, Kessler RC (2007) Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry 64:543–552

    Article  PubMed Central  PubMed  Google Scholar 

  • Miquel J (1992) An update on the mitochondrial-DNA mutation hypothesis of cell aging. Mutat Res 275:209–216

    Article  CAS  PubMed  Google Scholar 

  • Munakata K, Tanaka M, Mori K, Washizuka S, Yoneda M, Tajima O, Akiyama T, Nanko S, Kunugi H, Tadokoro K, Ozaki N, Inada T, Sakamoto K, Fukunaga T, Iijima Y, Iwata N, Tatsumi M, Yamada K, Yoshikawa T, Kato T (2004) Mitochondrial DNA 3644Tâž”C mutation associated with bipolar disorder. Genomics 84:1041–1050

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  CAS  PubMed  Google Scholar 

  • Pralong E, Magistretti P, Stoop R (2002) Cellular perspectives on the glutamate-monoamine interactions in limbic lobe structures and their relevance for some psychiatric disorders. Prog Neurobiol 67:173–202

    Article  CAS  PubMed  Google Scholar 

  • Purdon AD, Rapoport SI (1998) Energy requirements for two aspects of phospholipid metabolism in mammalian brain. Biochem J 335:313–318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Quiroz JA, Gray NA, Kato T, Manji HK (2008) Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder. Neuropsychopharmacology 33:2551–2565

    Article  CAS  PubMed  Google Scholar 

  • Radi R, Rodriguez M, Castro L, Telleri R (1994) Inhibition of mitochondrial electron transport by peroxynitrite. Arch Biochem Biophys 308:89–95

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 9:741–752

    Article  Google Scholar 

  • Ressler KJ, Nemeroff CB (1999) Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiatry 46:1219–1233

    Article  CAS  PubMed  Google Scholar 

  • Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O (2006) Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impact of past episodes. World J Biol Psychiatry 7:51–55

    Article  PubMed  Google Scholar 

  • Sedvall G (1990) Monoamines and schizophrenia. Acta Psychiatr Scand Suppl 358:7–13

    Article  CAS  PubMed  Google Scholar 

  • Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M (2008) The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 107:89–94

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Cui J, Young LT, Wang JF (2008) The effect of mood stabilizer lithium on expression and activity of glutathione s-transferase isoenzymes. Neuroscience 151:518–524

    Article  CAS  PubMed  Google Scholar 

  • Shukla GS (1987) Mechanism of lithium action: in vivo and in vitro effects of alkali metals on brain superoxide dismutase. Pharmacol Biochem Behav 26:235–240

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed Central  PubMed  Google Scholar 

  • Tan H, Shao L, Che Y, Young LT, Honer WG, Wang JF (2012) Mood stabilizer lithium prevents amphetamine-increased adductions of 4-hydroxynonenal with presynaptic proteins in rat frontal cortex. Int J Neuropsychopharmacol 15:1275–1285

    Article  CAS  PubMed  Google Scholar 

  • Valvassori SS, Rezin GT, Ferreira CL, Moretti M, Gonçalves CL, Cardoso MR, Streck EL, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on mitochondrial respiratory chain activity in brain of rats treated with d-amphetamine. J Psychiatr Res 44:903–909

    Article  PubMed  Google Scholar 

  • Wang JF, Azzam JE, Young LT (2003) Valproate inhibits oxidative damage to lipid and protein in primary cultured rat cerebrocortical cells. Neuroscience 116:485–489

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Shao L, Sun X, Young LT (2004) Glutathione S-transferase is a novel target for mood stabilizing drugs in primary cultured neurons. J Neurochem 88:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Wang ZJ, Liang CL, Li GM, Yu CY, Yin M (2006) Neuroprotective effects of arachidonic acid against oxidative stress on rat hippocampal slices. Chem Biol Interact 163:207–217

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11:523–529

    Article  CAS  PubMed  Google Scholar 

  • Wang JF, Tan H, Li HY, Shao L, Honer WG (2012) Oxidative modification of synaptosomal associated protein 25. The 16th biennial meeting for the Society for Free Radical Research International, Abstract HNE.P.6, London

    Google Scholar 

  • Washizuka S, Iwamoto K, Kazuno AA, Kakiuchi C, Mori K, Kametani M, Yamada K, Kunugi H, Tajima O, Akiyama T, Nanko S, Yoshikawa T, Kato T (2004) Association of mitochondrial complex I subunit Gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the national institute of mental health pedigrees. Biol Psychiatry 56:483–489

    Article  CAS  PubMed  Google Scholar 

  • Washizuka S, Kakiuchi C, Mori K, Tajima O, Akiyama T, Kato T (2005) Expression of mitochondria-related genes in lymphoblastoid cells from patients with bipolar disorder. Bipolar Disord 7:146–152

    Article  CAS  PubMed  Google Scholar 

  • Watabe M, Nakaki T (2008) Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol 74:933–940

    Article  CAS  PubMed  Google Scholar 

  • Wiste AK, Arango V, Ellis SP, Mann JJ, Underwood MD (2008) Norepinephrine and serotonin imbalance in the locus coeruleus in bipolar disorder. Bipolar Disord 10:349–359

    Article  PubMed  Google Scholar 

  • Xu C, Li PP, Kennedy JL, Green M, Hughes B, Cooke RG, Parikh SV, Warsh JJ (2008) Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord 10:105–110

    Article  PubMed  Google Scholar 

  • Yildiz A, Sachs GS, Dorer DJ, Renshaw PF (2001) 31P nuclear magnetic resonance spectroscopy findings in bipolar illness: a meta-analysis. Psychiatry Res 106:181–191

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Feng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Tang, V., Wang, JF. (2014). Mitochondrial Dysfunction and Oxidative Stress in Bipolar Disorder. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_83

Download citation

Publish with us

Policies and ethics

Navigation