Oxidative Stress in Bipolar Disorder

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

Bipolar disorder (BD) is a major public health problem associated with significant functional impairment. Despite recent advances, the molecular mechanisms underlying BD remain unclear. Cumulative evidence from research studies, including those from our laboratory, has shown that the regulation of energy metabolism through mitochondrial electron transport chain and alterations in calcium voltage-dependent channels may be central to the pathophysiology of BD. In fact, patients with BD present an increase in markers of oxidative damage to lipids, proteins, and DNA in both central and peripheral samples followed by increased intracellular levels of calcium. In theory, calcium might trigger mitochondrial dysfunction, which in turn leads to an increase in the production of reactive oxygen species and its consequent oxidative stress damage to biomolecules. Therefore, this chapter will discuss the recent findings of oxidative stress and mitochondrial dysfunction in BD and how calcium alterations play a role in this scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT:

Serotonin

5meOHC:

5-hydroxymethylcisteine

8-OHdG:

8-hydroxy-2-deoxyguanosine

BD:

Bipolar disorder

BER:

Base excision repair

DNA:

Glycosylase 1

ETC:

Electron transport chain

GWAS:

Genome-wide association studies

LPA:

Lysophosphatic acid

MD:

Mitochondrial dysfunction

MDD:

Major depressive disorder

NER:

Nucleotide excision repair

Ogg1:

Oxyguanosine

PAF:

Platelet-activating factor

PKA:

Protein kinase A

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCZ:

Schizophrenia

References

  • Adam-Vizi V, Starkov AA (2010) Calcium and mitochondrial reactive oxygen species generation: how to read the facts. J Alzheimers Dis 20(Suppl 2):S413–S426

    PubMed Central  PubMed  Google Scholar 

  • Altamura AC, Serati M, Albano A, Paoli RA, Glick ID, Dell’Osso B (2011) An epidemiologic and clinical overview of medical and psychopathological comorbidities in major psychoses. Eur Arch Psychiatry Clin Neurosci 261:489–508

    Article  PubMed  Google Scholar 

  • Andreazza AC, Cassini C, Rosa AR, Leite MC, de Almeida LM, Nardin P, Cunha AB, Cereser KM, Santin A, Gottfried C, Salvador M, Kapczinski F, Goncalves CA (2007a) Serum S100B and antioxidant enzymes in bipolar patients. J Psychiatr Res 41:523–529

    Article  PubMed  Google Scholar 

  • Andreazza AC, Frey BN, Erdtmann B, Salvador M, Rombaldi F, Santin A, Goncalves CA, Kapczinski F (2007b) DNA damage in bipolar disorder. Psychiatry Res 153:27–32

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kauer-Sant’anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144

    Article  CAS  PubMed  Google Scholar 

  • Andreazza AC, Kapczinski F, Kauer-Sant’Anna M, Walz JC, Bond DJ, Goncalves CA, Young LT, Yatham LN (2009) 3-Nitrotyrosine and glutathione antioxidant system in patients in the early and late stages of bipolar disorder. J Psychiatry Neurosci 34:263–271

    PubMed Central  PubMed  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    Article  CAS  PubMed  Google Scholar 

  • Barzilai A, Yamamoto K (2004) DNA damage responses to oxidative stress. DNA Repair (Amst) 3:1109–1115

    Article  CAS  Google Scholar 

  • Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803

    Article  CAS  PubMed  Google Scholar 

  • Bigos KL, Mattay VS, Callicott JH, Straub RE, Vakkalanka R, Kolachana B, Hyde TM, Lipska BK, Kleinman JE, Weinberger DR (2010) Genetic variation in CACNA1C affects brain circuitries related to mental illness. Arch Gen Psychiatry 67:939–945

    Article  PubMed Central  PubMed  Google Scholar 

  • Bohr VA, Dianov GL (1999) Oxidative DNA damage processing in nuclear and mitochondrial DNA. Biochimie 81:155–160

    Article  CAS  PubMed  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brandt U, Kerscher S, Drose S, Zwicker K, Zickermann V (2003) Proton pum** by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 545:9–17

    Article  CAS  PubMed  Google Scholar 

  • Burcham PC, Harkin LA (1999) Mutations at G:C base pairs predominate after replication of peroxyl radical-damaged pSP189 plasmids in human cells. Mutagenesis 14:135–140

    Article  CAS  PubMed  Google Scholar 

  • Buttner N, Bhattacharyya S, Walsh J, Benes FM (2007) DNA fragmentation is increased in non-GABAergic neurons in bipolar disorder but not in schizophrenia. Schizophr Res 93:33–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Campbell GR, Mahad DJ (2012) Mitochondrial changes associated with demyelination: consequences for axonal integrity. Mitochondrion 2:173–179

    Article  Google Scholar 

  • Castegna A, Aksenov M, Aksenova M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002a) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radic Biol Med 33:562–571

    Article  CAS  PubMed  Google Scholar 

  • Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002b) Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinase-related protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 82:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  • Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35:296–302

    Article  PubMed Central  PubMed  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2010) Mitochondrial Ca2+ sequestration and precipitation revisited. FEBS J 277:3637–3651

    Article  CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2010) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    Article  PubMed Central  PubMed  Google Scholar 

  • Cui J, Shao L, Young LT, Wang JF (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M, Catterall WA (1996) Specific phosphorylation of a site in the full-length form of the alpha 1 subunit of the cardiac L-type calcium channel by adenosine 3’,5’-cyclic monophosphate-dependent protein kinase. Biochemistry 35:10392–10402

    Article  PubMed  Google Scholar 

  • Dubovsky SL, Thomas M, Hijazi A, Murphy J (1994) Intracellular calcium signalling in peripheral cells of patients with bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci 243:229–234

    Article  CAS  PubMed  Google Scholar 

  • El Khoury A, Petterson U, Kallner G, Aberg-Wistedt A, Stain-Malmgren R (2002) Calcium homeostasis in long-term lithium-treated women with bipolar affective disorder. Prog Neuropsychopharmacol Biol Psychiatry 26:1063–1069

    Article  PubMed  Google Scholar 

  • Emamghoreishi M, Li PP, Schlichter L, Parikh SV, Cooke R, Warsh JJ (2000) Associated disturbances in calcium homeostasis and G protein-mediated cAMP signaling in bipolar I disorder. Biol Psychiatry 48:665–673

    Article  CAS  PubMed  Google Scholar 

  • Evans MD, Cooke MS, Akil M, Samanta A, Lunec J (2000) Aberrant processing of oxidative DNA damage in systemic lupus erythematosus. Biochem Biophys Res Commun 273:894–898

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MA, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar VL, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, MacLean AW, St CD, Robinson M, Van Beck M, Pereira AC, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Gurling HM, Owen MJ, Purcell SM, Sklar P, Craddock N (2008) Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat Genet 40:1056–1058

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gigante AD, Young LT, Yatham LN, Andreazza AC, Nery FG, Grinberg LT, Heinsen H, Lafer B (2010) Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol 14:1075–1089

    Article  PubMed  Google Scholar 

  • Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 1:77–85

    Article  Google Scholar 

  • Goldstein BI, Fagiolini A, Houck P, Kupfer DJ (2009) Cardiovascular disease and hypertension among adults with bipolar I disorder in the United States. Bipolar Disord 11:657–662

    Article  PubMed Central  PubMed  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansford RG (1985) Relation between mitochondrial calcium transport and control of energy metabolism. Rev Physiol Biochem Pharmacol 102:1–72

    Article  CAS  PubMed  Google Scholar 

  • Higuchi Y (2004) Glutathione depletion-induced chromosomal DNA fragmentation associated with apoptosis and necrosis. J Cell Mol Med 8:455–464

    Article  CAS  PubMed  Google Scholar 

  • Hough C, Lu SJ, Davis CL, Chuang DM, Post RM (1999) Elevated basal and thapsigargin-stimulated intracellular calcium of platelets and lymphocytes from bipolar affective disorder patients measured by a fluorometric microassay. Biol Psychiatry 46:247–255

    Article  CAS  PubMed  Google Scholar 

  • Iliakis G, Wang Y, Guan J, Wang H (2003) DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 22:5834–5847

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Kakiuchi C, Bundo M, Ikeda K, Kato T (2004) Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Mol Psychiatry 9:406–416

    Article  CAS  PubMed  Google Scholar 

  • Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14:241–253

    Article  CAS  PubMed  Google Scholar 

  • Jeong SY, Seol DW (2008) The role of mitochondria in apoptosis. BMB Rep 41:11–22

    Article  CAS  PubMed  Google Scholar 

  • Jogia J, Ruberto G, Lelli-Chiesa G, Vassos E, Maierú M, Tatarelli R, Girardi P, Collier D, Frangou S (2011) The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder. Mol Psychiatry 11:1070–1071

    Article  Google Scholar 

  • Kakiuchi C, Ishiwata M, Kametani M, Nelson C, Iwamoto K, Kato T (2005) Quantitative analysis of mitochondrial DNA deletions in the brains of patients with bipolar disorder and schizophrenia. Int J Neuropsychopharmacol 8:515–522

    Article  CAS  PubMed  Google Scholar 

  • Kameda K, Fukao M, Kobayashi T, Tsutsuura M, Nagashima M, Yamada Y, Yamashita T, Tohse N (2006) CSN5/Jab1 inhibits cardiac L-type Ca2+ channel activity through protein-protein interactions. J Mol Cell Cardiol 40:562–569

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2008a) Molecular neurobiology of bipolar disorder: a disease of ‘mood-stabilizing neurons’? Trends Neurosci 31:495–503

    Article  CAS  PubMed  Google Scholar 

  • Kato T (2008b) Role of mitochondrial DNA in calcium signaling abnormality in bipolar disorder. Cell Calcium 44:92–102

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Kato N (2000) Mitochondrial dysfunction in bipolar disorder. Bipolar Disord 2:180–190

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Stine OC, McMahon FJ, Crowe RR (1997) Increased levels of a mitochondrial DNA deletion in the brain of patients with bipolar disorder. Biol Psychiatry 42:871–875

    Article  CAS  PubMed  Google Scholar 

  • Kato T, Ishiwata M, Mori K, Washizuka S, Tajima O, Akiyama T, Kato N (2003) Mechanisms of altered Ca2+ signalling in transformed lymphoblastoid cells from patients with bipolar disorder. Int J Neuropsychopharmacol 6:379–389

    Article  CAS  PubMed  Google Scholar 

  • Kazuno AA, Munakata K, Nagai T, Shimozono S, Tanaka M, Yoneda M, Kato N, Miyawaki A, Kato T (2006) Identification of mitochondrial DNA polymorphisms that alter mitochondrial matrix pH and intracellular calcium dynamics. PLoS Genet 2:e128

    Article  PubMed Central  PubMed  Google Scholar 

  • Kazuno AA, Munakata K, Kato N, Kato T (2008) Mitochondrial DNA-dependent effects of valproate on mitochondrial calcium levels in transmitochondrial cybrids. Int J Neuropsychopharmacol 11:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kempton MJ, Ruberto G, Vassos E, Tatarelli R, Girardi P, Collier D, Frangou S (2009) Effects of the CACNA1C risk allele for bipolar disorder on cerebral gray matter volume in healthy individuals. Am J Psychiatry 166:1413–1414

    Article  PubMed  Google Scholar 

  • Koh PO, Undie AS, Kabbani N, Levenson R, Goldman-Rakic PS, Lidow MS (2003) Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc Natl Acad Sci U S A 100:313–317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61:300–308

    Article  CAS  PubMed  Google Scholar 

  • Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20:171–175

    Article  CAS  PubMed  Google Scholar 

  • Lee JR, Kim JK, Lee SJ, Kim KP (2009) Role of protein tyrosine nitration in neurodegenerative diseases and atherosclerosis. Arch Pharm Res 32:1109–1118

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52:159–164

    Article  CAS  PubMed  Google Scholar 

  • Liu CS, Tsai CS, Kuo CL, Chen HW, Lii CK, Ma YS, Wei YH (2003) Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic Res 37:1307–1317

    Article  CAS  PubMed  Google Scholar 

  • Machado-Vieira R, Andreazza AC, Viale CI, Zanatto V, Cereser V Jr, da Silva Vargas R, Kapczinski F, Portela LV, Souza DO, Salvador M, Gentil V (2007) Oxidative stress parameters in unmedicated and treated bipolar subjects during initial manic episode: a possible role for lithium antioxidant effects. Neurosci Lett 421:33–36

    Article  CAS  PubMed  Google Scholar 

  • Mallozzi C, Ceccarini M, Camerini S, Macchia G, Crescenzi M, Petrucci TC, Di Stasi AM (2009) Peroxynitrite induces tyrosine residue modifications in synaptophysin C-terminal domain, affecting its interaction with src. J Neurochem 111:859–869

    Article  CAS  PubMed  Google Scholar 

  • Mao G, Pan X, Zhu BB, Zhang Y, Yuan F, Huang J, Lovell MA, Lee MP, Markesbery WR, Li GM, Gu L (2007) Identification and characterization of OGG1 mutations in patients with Alzheimer’s disease. Nucleic Acids Res 35:2759–2766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56:1277–1286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merikangas KR, ** R, He JP, Kessler RC, Lee S, Sampson NA, Viana MC, Andrade LH, Hu C, Karam EG, Ladea M, Medina-Mora ME, Ono Y, Posada-Villa J, Sagar R, Wells JE, Zarkov Z (2011) Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry 68:241–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller BA, Zhang W (2011) TRP channels as mediators of oxidative stress. Adv Exp Med Biol 704:531–544

    Article  CAS  PubMed  Google Scholar 

  • Munakata K, Suzuki T, Watanabe N, Nagai H, Kakishita M, Saeki S, Ogawa S (2004) Influence of epidural lidocaine injection on vecuronium-induced neuromuscular blockade. Masui 53:1377–1380

    PubMed  Google Scholar 

  • Murray J, Taylor SW, Zhang B, Ghosh SS, Capaldi RA (2003) Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem 278:37223–37230

    Article  CAS  PubMed  Google Scholar 

  • Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M (2005) Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93

    Article  CAS  PubMed  Google Scholar 

  • Nohesara S, Ghadirivasfi M, Mostafavi S, Eskandari MR, Ahmadkhaniha H, Thiagalingam S, Abdolmaleky HM (2011) DNA hypomethylation of MB-COMT promoter in the DNA derived from saliva in schizophrenia and bipolar disorder. J Psychiatr Res 45:1432–1438

    Article  PubMed  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, Wappler I, Birket MJ, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TB, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5:e110

    Article  PubMed Central  PubMed  Google Scholar 

  • Perova T, Wasserman MJ, Li PP, Warsh JJ (2008) Hyperactive intracellular calcium dynamics in B lymphoblasts from patients with bipolar I disorder. Int J Neuropsychopharmacol 11:185–196

    Article  CAS  PubMed  Google Scholar 

  • Perova T, Kwan M, Li PP, Warsh JJ (2010) Differential modulation of intracellular Ca2+ responses in B lymphoblasts by mood stabilizers. Int J Neuropsychopharmacol 13(6):693–702. Epub 2009 Apr 29. doi 10.1017/S1461145709000261

    Google Scholar 

  • Reeve AK, Krishnan KJ, Turnbull DM (2008) Age related mitochondrial degenerative disorders in humans. Biotechnol J 3:750–756

    Article  CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Brini M, Chiesa A, Filippin L, Pozzan T (1999) Mitochondria as biosensors of calcium microdomains. Cell Calcium 26:193–199

    Article  CAS  PubMed  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912

    Article  CAS  PubMed  Google Scholar 

  • Saretzki G, Von Zglinicki T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959:24–29

    Article  CAS  PubMed  Google Scholar 

  • Savas HA, Herken H, Yurekli M, Uz E, Tutkun H, Zoroglu SS, Ozen ME, Cengiz B, Akyol O (2002) Possible role of nitric oxide and adrenomedullin in bipolar affective disorder. Neuropsychobiology 45:57–61

    Article  CAS  PubMed  Google Scholar 

  • Savas HA, Gergerlioglu HS, Armutcu F, Herken H, Yilmaz HR, Kocoglu E, Selek S, Tutkun H, Zoroglu SS, Akyol O (2006) Elevated serum nitric oxide and superoxide dismutase in euthymic bipolar patients: impact of past episodes. World J Biol Psychiatry 7:51–55

    Article  PubMed  Google Scholar 

  • Schulze TG (2010) Genetic research into bipolar disorder: the need for a research framework that integrates sophisticated molecular biology and clinically informed phenotype characterization. Psychiatr Clin North Am 33:67–82

    Article  PubMed Central  PubMed  Google Scholar 

  • Schulze TG, Detera-Wadleigh SD, Akula N, Gupta A, Kassem L, Steele J, Pearl J, Strohmaier J, Breuer R, Schwarz M, Prop** P, Nothen MM, Cichon S, Schumacher J, Rietschel M, McMahon FJ (2009) Two variants in Ankyrin 3 (ANK3) are independent genetic risk factors for bipolar disorder. Mol Psychiatry 14:487–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selek S, Savas HA, Gergerlioglu HS, Bulbul F, Uz E, Yumru M (2008) The course of nitric oxide and superoxide dismutase during treatment of bipolar depressive episode. J Affect Disord 107:89–94

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91:31S–38S

    Article  CAS  PubMed  Google Scholar 

  • Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH, Nierenberg AA, Fava M, Wong KK (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol Psychiatry 60:432–435

    Article  CAS  PubMed  Google Scholar 

  • Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PI, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, MacIntyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13:558–569

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31:189–196

    PubMed Central  PubMed  Google Scholar 

  • Tseng M, Alda M, Xu L, Sun X, Wang JF, Grof P, Turecki G, Rouleau G, Young LT (2008) BDNF protein levels are decreased in transformed lymphoblasts from lithium-responsive patients with bipolar disorder. J Psychiatry Neurosci 33:449–453

    PubMed Central  PubMed  Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 191:421–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wallace DC (2007) Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2010) Mitochondrial DNA mutations in disease and aging. Environ Mol Mutagen 51:440–450

    CAS  PubMed  Google Scholar 

  • Wang JF, Shao L, Sun X, Young LT (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11:523–529

    Article  CAS  PubMed  Google Scholar 

  • Washizuka S, Iwamoto K, Kakiuchi C, Bundo M, Kato T (2009) Expression of mitochondrial complex I subunit gene NDUFV2 in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Neurosci Res 63:199–204

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Li PP, Kennedy JL, Green M, Hughes B, Cooke RG, Parikh SV, Warsh JJ (2008) Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord 10:105–110

    Article  PubMed  Google Scholar 

  • Yucel K, Taylor VH, McKinnon MC, Macdonald K, Alda M, Young LT, MacQueen GM (2008) Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 33:361–367

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana C. Andreazza Pharm, Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Scola, G., Andreazza, A.C. (2015). Oxidative Stress in Bipolar Disorder. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_3

Download citation

Publish with us

Policies and ethics

Navigation