Magnetic Resonance Spectroscopy Studies in Bipolar Disorder Patients: Focus on the Potential Role of Oxidative Stress

  • Chapter
  • First Online:
Studies on Psychiatric Disorders

Abstract

Neuronal oxidative stress has been proposed as a potential mechanism involved in the pathophysiology of bipolar disorder (BD), exerting detrimental effects on structural plasticity and neuroresilience. In particular, the over-regulation of glutamatergic neurotransmission and an excessive extracellular glutamate, acting as pro-oxidant factors leading to cellular toxicity and death, may in part sustain neuronal damage. Moreover, it has been demonstrated that oxidative stress is strictly and reciprocally associated to cellular mitochondrial functioning, ultimately resulting in mitochondrial dysfunction and cellular energetic impairment in BD. In this chapter, we will revise magnetic resonance spectroscopy (MRS) studies exploring glutamate neurotransmission and specific neural energetic markers in BD and will debate the findings in relation to oxidative stress and mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

Anterior cingulated cortex

ATP:

Adenosine triphosphate

BD:

Bipolar disorder

CAT:

Catalase

Cho:

Choline

CK:

Creatine kinase

Cr:

Creatine

DLPFC:

Dorsolateral prefrontal cortex

ETC:

Electron transport chain

GABA:

Gamma aminobutyric acid

Gln:

Glutamine

Glu:

Glutamate

GPC:

Glycerophosphocholine

GPx:

Glutathione peroxidase

GSH:

Glutathione

MRS:

Magnetic resonance spectroscopy

NAA:

N-acetyl-aspartate

NADPH:

Nicotinamide adenine dinucleotide

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

ONOO :

Peroxynitrite

PCh:

Phosphocholine

PCr:

Phosphocreatine

PME:

Phosphomonoester

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

WHO:

World Health Organization

References

  • Andreazza AC, Frey BN, Erdtmann B, Salvador M, Rombaldi F, Santin A, Goncalves CA, Kapczinski F (2007) DNA damage in bipolar disorder. Psychiatry Res 153:27–32

    CAS  PubMed  Google Scholar 

  • Andreazza AC, Anna MK, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111:135–144

    CAS  PubMed  Google Scholar 

  • Andreazza AC, Shao L, Wang J-F, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67:360–368

    CAS  PubMed  Google Scholar 

  • Aubert A, Costalat R (2002) A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. Neuroimage 1181:1162–1181

    Google Scholar 

  • Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    CAS  PubMed  Google Scholar 

  • Baslow MH (2003) N-acetylaspartate in the vertebrate brain. Metabolism and function. Neurochem Res 28:941–953

    CAS  PubMed  Google Scholar 

  • Bates GD, Van Woerkom AE (1996) Cytochromes and psychotropic drug interactions. Br J Psychiatry 169(5):670

    Google Scholar 

  • Bedard K, Karl-Heinz K (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    CAS  PubMed  Google Scholar 

  • Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder–a double-blind randomized placebo-controlled trial. Biol Psychiatry 64:468–475

    CAS  PubMed  Google Scholar 

  • Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, Post R, Weinberger DR (2003) Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry 53:906–913

    PubMed  Google Scholar 

  • Bhagwagar Z, Wylezinska M, Jezzard P, Evans J, Ashworth F, Sule A, Matthews PM, Cowen PJ (2007) Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 61:806–812

    CAS  PubMed  Google Scholar 

  • Blakely RD, Ramamoorthy S, Schroeter S, Qian Y, Apparsundaram S, Galli A, DeFelice LJ (1998) Regulated phosphorylation and trafficking of antidepressant-sensitive serotonin transporter proteins. Biol Psychiatry 44(3):169–178

    Google Scholar 

  • Brady RO, Cooper A, Jensen JE, Tandon N, Cohen B, Renshaw P, Keshavan M, Öngür D (2012) A longitudinal pilot proton MRS investigation of the manic and euthymic states of bipolar disorder. Transl Psychiatry 2:e160

    PubMed Central  PubMed  Google Scholar 

  • Brambilla P, Stanley JA, Sassi RB, Nicoletti MA, Mallinger AG, Keshavan MS, Soares JC (2004) 1H MRS study of dorsolateral prefrontal cortex in healthy individuals before and after lithium administration. Neuropsychopharmacology 29:1918–1924

    CAS  PubMed  Google Scholar 

  • Brambilla P, Stanley JA, Nicoletti MA, Sassi RB, Mallinger AG, Frank E, Kupfer D, Keshavan MS, Soares JC (2005) 1H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. J Affect Disord 86:61–67

    PubMed  Google Scholar 

  • Castilho RF, Ward MW, Nicholls DG (1999) Oxidative stress, mitochondrial function, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 72:1394–1401

    CAS  PubMed  Google Scholar 

  • Castillo M, Kwock L, Courvoisie H, Hooper SR (2000) Proton MR spectroscopy in children with bipolar affective disorder: preliminary observations. AJNR Am J Neuroradiol 21:832–838

    CAS  PubMed  Google Scholar 

  • Cataldo AM, Mcphie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, Froimowitz MP, Hassinger LC, Menesale EB, Sargent LW (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177:575–585

    PubMed Central  PubMed  Google Scholar 

  • Cecil KM, DelBello MP, Morey R, Strakowski SM (2002) Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 4:357–365

    CAS  PubMed  Google Scholar 

  • Chang K, Adleman N, Dienes K, Barnea-Goraly N, Reiss A, Ketter T (2003) Decreased N-acetylaspartate in children with familial bipolar disorder. Biol Psychiatry 53:1059–1065

    CAS  PubMed  Google Scholar 

  • Chen C, Liao S, Kuo J (2000) Gliotoxic action of glutamate on cultured astrocytes. J Neurochem 75:1557–1565

    CAS  PubMed  Google Scholar 

  • Chen C-H, Suckling J, Lennox BR, Ooi C, Bullmore ET (2011) A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord 13:1–15

    CAS  PubMed  Google Scholar 

  • Clausen T, Zauner A, Levasseur JE, Rice AC, Bullock R (2001) Induced mitochondrial failure in the feline brain: implications for understanding acute post-traumatic metabolic events. Brain Res 908:35–48

    CAS  PubMed  Google Scholar 

  • Clark JB (1998) N-acetyl aspartate: a marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 20(4–5):271–276

    CAS  PubMed  Google Scholar 

  • Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29:311–324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colla M, Schubert F, Bubner M, Heidenreich JO, Bajbouj M, Seifert F, Luborzewski A, Heuser I, Kronenberg G (2009) Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol Psychiatry 14(696–704):647

    Google Scholar 

  • Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458

    CAS  PubMed  Google Scholar 

  • Dager SR, Oskin NM, Richards TLPS (2008) NIH public access. Top Magn Reson Imaging 19:81–96

    PubMed Central  PubMed  Google Scholar 

  • Davanzo P, Thomas MA, Yue K, Oshiro T, Belin T, Strober M, McCracken J (2001) Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology 24:359–369

    CAS  PubMed  Google Scholar 

  • Davanzo P, Yue K, Thomas MA, Ph D, Belin T, Mintz J, Venkatraman TN, Santoro E, Barnett S, Mccracken J (2003) Proton magnetic resonance spectroscopy of bipolar disorder versus intermittent explosive disorder in children and adolescents. Am J Psychiatry 160:1442–1452

    PubMed  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50:279–289

    CAS  PubMed  Google Scholar 

  • Deicken F, Weiner W, Fein G (1995) Decreased temporal lobe phosphomonoesters. J Affect Disord 33:195–199

    CAS  PubMed  Google Scholar 

  • Deicken RF, Eliaz Y, Feiwell R (2001) Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiatry Res 106:35–45

    CAS  PubMed  Google Scholar 

  • Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B (2003) Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry 160:873–882

    PubMed  Google Scholar 

  • DelBello MP, Cecil KM, Adler CM, Daniels JP, Strakowski SM (2006) Neurochemical effects of olanzapine in first-hospitalization manic adolescents: a proton magnetic resonance spectroscopy study. Neuropsychopharmacology 31:1264–1273

    CAS  PubMed  Google Scholar 

  • Dong X, Wang Y, Qin Z (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Farber SA, Slack BE, Blusztajn JANK (2000) Acceleration of phosphatidylcholine synthesis and breakdown by inhibitors of mitochondrial function in neuronal cells: a model of the membrane defect of Alzheimer’s disease. FASEB J 14:2198–2206

    CAS  PubMed  Google Scholar 

  • Fekadu A, Wooderson SC, Markopoulo K, Donaldson C, Papadopoulos A, Cleare AJ (2009) What happens to patients with treatment-resistant depression? A systematic review of medium to long term outcome studies. J Affect Disord 116:4–11

    PubMed  Google Scholar 

  • Filomeni G, Ciriolo MR (2006) Redox control of apoptosis: an update. Antioxid Redox Signal 8:2187–2192

    CAS  PubMed  Google Scholar 

  • Forester BP, Finn CT, Berlow YA, Wardrop M, Renshaw PF, Moore CM (2008) Brain lithium, N-acetyl aspartate and myo-inositol levels in older adults with bipolar disorder treated with lithium: a lithium-7 and proton magnetic resonance spectroscopy study. Bipolar Disord 10:691–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Frey N, Folgierini M, Nicoletti M, Machado-vieira R (2005) A proton magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in acute mania. Hum Psychopharmacol 20:133–139

    CAS  PubMed  Google Scholar 

  • Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen H-H, Hatch JP, Caetano SC, Ortiz O, Kapczinski F (2007) Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 9(Suppl 1):119–127

    PubMed  Google Scholar 

  • Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry 56:340–348

    CAS  PubMed  Google Scholar 

  • Frye MA, Thomas MA, Yue K, Binesh N, Davanzo P, Ventura J, O’Neill J, Guze B, Curran JG, Mintz J (2007a) Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy. Psychiatry Res 154:259–265

    CAS  PubMed  Google Scholar 

  • Frye MA, Watzl J, Banakar S, O’Neill J, Mintz J, Davanzo P, Fischer J, Chirichigno JW, Ventura J, Elman S (2007b) Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 32:2490–2499

    CAS  PubMed  Google Scholar 

  • Gautier CA, Giaime E, Caballero E, Núñez L, Song Z, Chan D, Villalobos C, Shen J (2012) Regulation of mitochondrial permeability transition pore by PINK1. Mol Neurodegener 7:1–15

    Google Scholar 

  • Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN (2012) Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord 14:478–487

    CAS  PubMed  Google Scholar 

  • Grover S (2006) Letter to the Editor Mania as a first presentation in mitochondrial myopathy. Psychiatry Clin Neurosci 60:774–775

    PubMed  Google Scholar 

  • Hamakawa H, Murashita JUN (2004) Reduced intracellular pH in the basal ganglia and whole brain measured by 31 P-MRS in bipolar disorder. Psychiatry Clin Neurosci 5:82–88

    Google Scholar 

  • Hamakawa H, Kato T, Murashita J, Kato N (1998) Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. Eur Arch Psychiatry Clin Neurosci 248:53–58

    CAS  PubMed  Google Scholar 

  • Hamakawa H, Kato T, Shioiri T, Inubushi T, Kato N (1999) Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol Med 29:639–644

    CAS  PubMed  Google Scholar 

  • Heneka MT, Rodríguez JJ, Verkhratsky A (2009) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    PubMed  Google Scholar 

  • Horn D, Barrientos A (2008) NIH public access. IUBMB Life 60:421–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jou S-H, Chiu N-Y, Liu C-S (2009) Mitochondrial dysfunction and psychiatric disorders. Chang Gung Med J 32:370–379

    PubMed  Google Scholar 

  • Judd LL, Akiskal HS, Schettler PJ, Endicott J, Maser J, Solomon DA, Leon AC, Rice JA, Keller MB (2002) The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry 59:530–537

    PubMed  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T (1994) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31(2):125–133

    Google Scholar 

  • Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S (1995) Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 25(3):557–566

    Google Scholar 

  • Kato TK (2000) The role of mitochondrial dysfunction in bipolar disorder. Drug News Perspect 19:597–602

    Google Scholar 

  • Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, Inubushi T (1996) Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J Psychiatry Neurosci 21:248–254

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato T, Murashita J, Kamiya A, Shioiri T, Kato N, Inubushi T (1998) Decreased brain intracellular pH measured by 31P-MRS in bipolar disorder: a confirmation in drug-free patients and correlation with white matter hyperintensity. Eur Arch Psychiatry Clin Neurosci 248:301–306

    CAS  PubMed  Google Scholar 

  • Kaufman RE, Ostacher MJ, Marks EH, Simon NM, Sachs GS, Jensen JE, Renshaw PF, Pollack MH (2009) Brain GABA levels in patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 33:427–434

    CAS  PubMed  Google Scholar 

  • Kessler RC, Aguilar-gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Üstün TB, Wang PS (2009) World Mental Health (WMH) surveys. Epidemiol Psychiatry Sci 18:23–33

    Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2011) Role of LOX/COX pathways in 3-nitropropionic acid-induced Huntington’s disease-like symptoms in rats: protective effect of licofelone. Br J Pharmacol 164:644–654

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lai JS, Zhao C, Warsh JJ, Li PP (2006) Cytoprotection by lithium and valproate varies between cell types and cellular stresses. Eur J Pharmacol 539:18–26

    CAS  PubMed  Google Scholar 

  • Lan MJ, McLoughlin GA, Griffin JL, Tsang TM, Huang JTJ, Yuan P, Manji H, Holmes E, Bahn S (2009) Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry 14:269–279

    CAS  PubMed  Google Scholar 

  • Lane RD, Reiman EM, Ahern GL, Schwartz GE, Davidson RJ (1997) Neuroanatomical correlates of happiness, sadness, and disgust. Am J Psychiatry 154:926–933

    CAS  PubMed  Google Scholar 

  • Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 460:525–542

    CAS  PubMed  Google Scholar 

  • Lee H, Wei Y (2005) Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37:822–834

    CAS  PubMed  Google Scholar 

  • Lemus-Molina Y, Sánchez-Gómez MV, Delgado-Hernández R, Matute C (2009) Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons. Neurotoxicology 30:1053–1058

    CAS  PubMed  Google Scholar 

  • Lipton SA (2008) NMDA receptor activity regulates transcription of antioxidant pathways Language evolution: neural differences that make a difference. Nat Neurosci 11:381–382

    CAS  PubMed  Google Scholar 

  • Madhavarao CN, Chinopoulos C, Chandrasekaran K, Namboodiri MAA (2003) Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain. J Neurochem 86:824–835

    CAS  PubMed  Google Scholar 

  • Malhi G, Ivanovski B, Wen W, Lagopoulos J, Moss K, Sachdev P (2007) Measuring mania metabolites: a longitudinal proton spectroscopy study of hypomania. Acta Psychiatr Scand 116:57–66

    Google Scholar 

  • Mancuso M, Ricci G, Choub A, Filosto M, Dimauro S, Davidzon G, Tessa A, Santorelli FM, Murri L, Siciliano G (2008) Autosomal dominant psychiatric disorders and mitochondrial DNA multiple deletions: report of a family. J Affect Disord 106:173–177

    CAS  PubMed  Google Scholar 

  • Manji HK, Moore GJ, Chen G (2000) Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 48:740–754

    CAS  PubMed  Google Scholar 

  • Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, Chen G (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13:293–307

    CAS  PubMed  Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60:748–766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL (2012) Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol 698:6–18

    PubMed  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B (2003a) Neurotrophic effects of electroconvulsive therapy: a proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology 28:720–725

    CAS  PubMed  Google Scholar 

  • Michael N, Erfurth A, Ohrmann P, Gössling M, Arolt V, Heindel W, Pfleiderer B (2003b) Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl) 168:344–346

    CAS  Google Scholar 

  • Michael N, Erfurth A, Pfleiderer B (2009) Elevated metabolites within dorsolateral prefrontal cortex in rapid cycling bipolar disorder. Psychiatry Res 172:78–81

    CAS  PubMed  Google Scholar 

  • Miller JP, Holcomb J, Al-ramahi I, De Haro M, Gafni J, Zhang N, Kim E, Sanhueza M, Torcassi C, Kwak S (2010) Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67:199–212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minuzzi L, Cláudio J, Moreira F (2011) Mitochondrial dysfunction in bipolar disorder: lessons from brain imaging and molecular markers 167S. Rev Colomb Psiquiat 40:166–182

    Google Scholar 

  • Molochnikov L, Rabey JM, Dobronevsky E, Bonucelli U, Ceravolo R, Frosini D, Grünblatt E, Riederer P, Jacob C, Aharon-peretz J (2012) A molecular signature in blood identifies early Parkinson’s disease. Mol Neurodegener 7:1

    Google Scholar 

  • Moore CM, Breeze JL, Gruber SA, Babb SM, Frederick BB, Villafuerte RA, Stoll AL, Hennen J, Yurgelun-Todd DA, Cohen BM (2000a) Choline, myo-inositol and mood in bipolar disorder: a proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disord 2:207–216

    CAS  PubMed  Google Scholar 

  • Moore GJ, Bebchuk JM, Hasanat K, Chen G, Seraji-Bozorgzad N, Wilds IB, Faulk MW, Koch S, Glitz DA, Jolkovsky L (2000b) Lithium increases N-acetyl-aspartate in the human brain: in vivo evidence in support of bcl-2’s neurotrophic effects? Biol Psychiatry 48:1–8

    CAS  PubMed  Google Scholar 

  • Moore GJ, Galloway MP (2002) Magnetic resonance spectroscopy: neurochemistry and treatment effects in affective disorders. Psychopharmacol Bull. Spring;36(2):5–23

    Google Scholar 

  • Moro MA, Almeida A, Bolanos J, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke B Marı. Free Radic Biol Med 39:1291–1304

    CAS  PubMed  Google Scholar 

  • Muller F (2000) The nature and mechanism of superoxide production by electron transport chain: its relevance on aging. J Am Aging Assoc 23:227–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nery FG, Stanley JA, Chen H-H, Hatch JP, Nicoletti MA, Monkul ES, Lafer B, Soares JC (2010) Bipolar disorder comorbid with alcoholism: a 1H magnetic resonance spectroscopy study. J Psychiatr Res 44:278–285

    PubMed Central  PubMed  Google Scholar 

  • Nicholls DG (2008) Oxidative stress and energy crises in neuronal dysfunction. Ann N Y Acad Sci 1147:53–60

    CAS  PubMed  Google Scholar 

  • Nicholls DG (2009) Spare respiratory capacity, oxidative stress and excitotoxicity. Biochem Soc Trans 37:1385–1388

    CAS  PubMed  Google Scholar 

  • Ohara K, Isoda H, Suzuki Y, Takehara Y (1998) Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiatry Res 84:55–60

    CAS  PubMed  Google Scholar 

  • Ongür D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64:718–726

    PubMed Central  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Google Scholar 

  • Parihar MS, Brewer GJ (2007) Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age- related glutamate excitotoxicity in rat hippocampal neurons. J Neurosci Res 85:1018–1032

    CAS  PubMed  Google Scholar 

  • Patel BTB, Clark JB (1979) Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem J 184:539–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel NC, Cecil KM, Strakowski SM, Adler CM, DelBello MP (2008) Neurochemical alterations in adolescent bipolar depression: a proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. J Child Adolesc Psychopharmacol 18:623–627

    PubMed Central  PubMed  Google Scholar 

  • Port JD, Unal SS, Mrazek D, Marcus SM (2008) Metabolic alterations in medication-free patients with bipolar disorder: a 3T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Res 162:113–121

    CAS  PubMed  Google Scholar 

  • Sassi RB, Nicoletti M, Brambilla P, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2002) Increased gray matter volume in lithium-treated bipolar disorder patients. Neurosci Lett 329:243–245

    CAS  PubMed  Google Scholar 

  • Sassi RB, Stanley JA, Axelson D, Brambilla P, Nicoletti MA, Keshavan MS, Ramos RT, Ryan N, Birmaher B, Soares JC (2005) Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry 162:2109–2115

    PubMed  Google Scholar 

  • Schloesser RJ, Manji HK, Martinowich K (2009) Axis response. Neuroreport 20:553–557

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senaratne R, Milne AM, MacQueen GM, Hall GBC (2009) Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: a proton magnetic resonance spectroscopy study. Psychiatry Res 172:205–209

    PubMed  Google Scholar 

  • Sharma R, Venkatasubramanian PN, Barany M, Davis JM (1992) Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophr Res 8:43–49

    CAS  PubMed  Google Scholar 

  • Shibuya-Tayoshi S, Tayoshi S, Sumitani S, Ueno S, Harada M, Ohmori T (2008) Lithium effects on brain glutamatergic and GABAergic systems of healthy volunteers as measured by proton magnetic resonance spectroscopy. Prog Neuropsychopharmacol Biol Psychiatry 32:249–256

    CAS  PubMed  Google Scholar 

  • Sies H (1991) Oxidative stress: from basic research to clinical application. Am J Med 91(3C):31S–38S

    Google Scholar 

  • Silverstone PH, Wu RH, O’Donnell T, Ulrich M, Asghar SJ, Hanstock CC (2003) Chronic treatment with lithium, but not sodium valproate, increases cortical N-acetyl-aspartate concentrations in euthymic bipolar patients. Int Clin Psychopharmacol 18:73–79

    PubMed  Google Scholar 

  • Singh M, Spielman D, Adleman N, Alegria D, Howe M, Reiss A, Chang K (2010) Brain glutamatergic characteristics of pediatric offspring of parents with bipolar disorder. Psychiatry Res 182:165–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Soeiro-de-Souza MG1, Salvadore G, Moreno RA, Otaduy MC, Chaim KT, Gattaz WF, Zarate CA Jr, Machado-Vieira R (2013) Bcl-2 rs956572 polymorphism is associated with increased anterior cingulate cortical glutamate in euthymic bipolar I disorder. Neuropsychopharmacology 38(3):468–475

    Google Scholar 

  • Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35:1295–1301

    CAS  PubMed  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10:900–919

    CAS  PubMed  Google Scholar 

  • Swamy M, Sirajudeen KN, Chandran G (2009) Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain. Drug Chem Toxicol 32(4):326–31

    CAS  PubMed  Google Scholar 

  • Tosic M, Ott J, Barral S, Bovet P, Deppen P, Gheorghita F, Matthey M-L, Parnas J, Preisig M, Saraga M (2006) Schizophrenia and oxidative stress: glutamate cysteine ligase modifier as a susceptibility gene. Am J Hum Genet 79:586–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Townsend J, Altshuler LL (2012) Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 14:326–339

    PubMed  Google Scholar 

  • Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610

    CAS  PubMed  Google Scholar 

  • van der Knaap MS, van der Grond J, Luyten PR, den Hollander JA, Nauta JJ, Valk J (1992) 1H and 31P magnetic resonance spectroscopy of the brain in degenerative cerebral disorders. Ann Neurol 31(2):202–211

    Google Scholar 

  • Vincent P, Mulle C (2009) Review: Kainate receptors in epilepsy and excitotoxicity. Neuroscience 158:309–323

    CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative disease, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Shao L, Sun X, Lt Y (2009) Increased oxidative stress in the anterior cingulate cortex of subjects with bipolar disorder and schizophrenia. Bipolar Disord 11:523–529

    CAS  PubMed  Google Scholar 

  • Winsberg E, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA (2000) Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder mire. Soc Biol Psychiatry 47:475–481

    CAS  Google Scholar 

  • Xu C, Pp L, Jl K, Green M, Hughes B, Rg C, Sv P (2008) Further support for association of the mitochondrial complex I subunit gene NDUFV2 with bipolar disorder. Bipolar Disord 10:105–110

    PubMed  Google Scholar 

  • Yang E-J, Min JS, Ku H-Y, Choi H-S, Park M, Kim MK, Song K-S, Lee D-S (2012) Isoliquiritigenin isolated from Glycyrrhiza uralensis protects neuronal cells against glutamate-induced mitochondrial dysfunction. Biochem Biophys Res Commun 421:658–664

    CAS  PubMed  Google Scholar 

  • Yildiz A, Sachs GS, Dorer DJ, Renshaw PF (2001) 31P Nuclear magnetic resonance spectroscopy findings in bipolar illness: a meta-analysis. Psychiatry Res 106:181–191

    CAS  PubMed  Google Scholar 

  • Yildiz-Yesiloglu A, Ankerst DP (2006) Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 30:969–995

    CAS  PubMed  Google Scholar 

  • Yüksel C, Öngür D (2010) Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry 68:785–794

    PubMed Central  PubMed  Google Scholar 

  • Zádori D, Klivényi P, Szalárdy L, Fülöp F, Toldi J, Vécsei L (2012) Mitochondrial disturbances, excitotoxicity, neuroinflammation and kynurenines: novel therapeutic strategies for neurodegenerative disorders. J Neurol Sci 322:187–191

    PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Brambilla was partially funded by grants from the Ministry of Health (GR-2010-2319022) and the IRCCS “E. Medea” (Ricerca Corrente 2012-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Brambilla M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dusi, N., Cecchetto, F., Brambilla, P. (2015). Magnetic Resonance Spectroscopy Studies in Bipolar Disorder Patients: Focus on the Potential Role of Oxidative Stress. In: Dietrich-Muszalska, A., Chauhan, V., Grignon, S. (eds) Studies on Psychiatric Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0440-2_9

Download citation

Publish with us

Policies and ethics

Navigation