Transport Properties of Gases Under Plasma Conditions

  • Living reference work entry
  • First Online:
Handbook of Thermal Plasmas

Abstract

This chapter is devoted to the transport phenomena under plasma conditions. The calculation of the transport coefficients related to the elementary particles in a gas is quite complex, even in the rather simple case of ideal gases. It is therefore valuable to develop very simple approximate methods that yield physical insight into basic mechanisms. Simple approximations often lead to the correct dependence of all significant parameters (such as pressure or temperature), even if the numerical values sometimes differ by up to 50 % from the results of the rigorous calculation The first part of this chapter deals with the simplest approximate method that can be used to calculate the transport properties, i.e., the elementary kinetic theory. This is followed by a more rigorous treatment of these phenomena for equilibrium plasmas and gases in complete thermodynamic equilibrium (CTE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CTE:

Complete thermodynamic equilibrium

CODC:

Combined ordinary diffusion coefficient

IUPAC:

International Union of pure and applied chemistry

ISPC:

International Symposium on Plasma Chemistry

References

  • André P, Aubreton J, Clain S, Dudeck M, Duffour E, Elchinger M.F, Izrar B, Rochette D, Touzani R, Vacher D (2010) Transport coefficients in thermal plasma. Applications to Mars and Titan atmospheres. Eur Phys J D 57:227–234

    Google Scholar 

  • Athye W.F (1965) A critical evaluation of methods for calculating transport coefficients of partially and fully ionized gases. NASA TN, ND-2611

    Google Scholar 

  • Aubreton J, Fauchais P (1983) Influence des potentiels d’intéraction sur les propriétés de transport des plasmas thermiques: exemple d’application le plasma argon hydrogène à la pression atmosphérique. Revue de Physique Appliquée 18(1):51–66

    Article  Google Scholar 

  • Aubreton J, Elchinger M.F, Vinson J.M (2009a) Transport coefficients in water plasma: part I: equilibrium plasma. Plasma Chem Plasma Process 29:149–171

    Article  Google Scholar 

  • Aubreton J, Elchinger M.-F, Hacala A, Michon U (2009b) Transport coefficients of typical biomass equimolar CO–H2 plasma. J Phys D Appl Phys 42:095206 (13 pp)

    Article  Google Scholar 

  • Aubreton J, Elchinger M.F, Andre P (2013) Influence of partition function and interaction potential on transport properties of thermal plasmas. Plasma Chem Plasma Process 33:367–399

    Article  Google Scholar 

  • Bacri J, Raffanel S (1989) Calculation of transport coefficients of air plasmas. Plasma Chem Plasma Process 9(1):133–154

    Article  Google Scholar 

  • Balescu R (1988) Transport processes in plasmas, vols 1 and 2. North-Holland, Amsterdam

    Google Scholar 

  • Behringer K, Kollmar W, Mentel J (1968) Messung der Wärmeleitfähigkeit von Wasserstoff zwischen 2000 und 7000 K, Z. Physics 215(2):127–151

    Article  Google Scholar 

  • Bottin B, Vanden Abeele D, Magin T.E, Rini P (2006) Transport properties of collision-dominated dilute perfect gas mixtures at low pressures and high temperatures. Prog Aerosp Sci 42:38–83

    Article  Google Scholar 

  • Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas: fundamentals and applications, vol 1. Plenum Press, New York/London

    Book  Google Scholar 

  • Bourdin E, Boulos M, Fauchais P (1983) Transient heat conduction to a single sphere under plasma conditions. Int J Heat Mass Transf 26:567

    Article  Google Scholar 

  • Brokaw RS (1960) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 32:1005

    Article  Google Scholar 

  • Butler J.N, Brokaw R.S (1957) Thermal conductivity of gas mixtures in chemical equilibrium. J Chem Phys 26:1636

    Article  Google Scholar 

  • Capitelli M (1972) Cut-off criteria of electronic partition functions and transport properties of thermal plasmas. J Plasma Phys 7(1):99–106

    Article  Google Scholar 

  • Capitelli M.J (1975) Charge transfer from low-lying excited states: effects on reactive thermal conductivity. Plasma Phys 14:365–371

    Article  Google Scholar 

  • Capitelli M, Gorse C, Fauchais P (1976) Transport coefficients of Ar-H2 high temperature. J Chem Phys 73:755

    Google Scholar 

  • Chapman S, Cowling T (1952) The mathematical theory of non-unifonn gases. Cambridge University Press, New York

    MATH  Google Scholar 

  • Chen W.L.T, Heberlein J, Pfender E (1996) Critical analysis of viscosity data of thermal argon plasmas at atmospheric pressure. Plasma Chem Plasma Process 16(4):635–650

    Article  Google Scholar 

  • Child M.S (1974) Molecular collision theory (Pub). Academic, New York

    Google Scholar 

  • Colonna G, D’Angola A, Laricchiuta A, Bruno D, Capitelli M (2013) Analytical expressions of thermodynamic and transport properties of the Martian atmosphere in a wide temperature and pressure range. Plasma Chem Plasma Process 33:401–431

    Article  Google Scholar 

  • Cressault Y, Gleizes A (2010) Calculation of diffusion coefficients in air–metal thermal plasmas. J Phys D Appl Phys 43:434006 (6 pp)

    Article  Google Scholar 

  • D’Angola A, Colonna G, Gorse C, Capitelli M (2008) Thermodynamic and transport properties in equilibrium air plasmas in a wide pressure and temperature range. Eur Phys J D 46:129–150

    Google Scholar 

  • D’Angola A, Colonna G, Bonomo A, Bruno D, Laricchiuta A, Capitelli M (2012) Phenomenological approach for the transport properties of air plasmas. Eur Phys J D 66:205

    Google Scholar 

  • Delcroix J.L, Bers A (1994) Physique des plasmas, vols 1 and 2. Inter Editions/CNRS Editions, Paris in French

    Google Scholar 

  • Devoto R.S (1965) The transport properties of a partially ionized monoatomic gas. PhD thesis, Stanford University

    Google Scholar 

  • Devoto R.S (1966) Transport properties of ionized monoatomic gases. Phys Fluids 9(6):1230–1240

    Article  Google Scholar 

  • Devoto R.S (1967) Simplified expressions for the transport properties of ionized monoatomic gases. Phys Fluids 10(10):2105–2112

    Article  Google Scholar 

  • Devoto R.S (1968) Transport coefficients of partially ionized hydrogen. J Plasma Phys 2(4):617–631

    Article  Google Scholar 

  • Devoto R.S (1973) Transport coefficients of ionized argon. Phys Fluids 16:616

    Article  Google Scholar 

  • Devoto R.S, Li C.P (1968) Transport coefficients of partially ionized helium. J Plasma Phys 2(1):17–32

    Article  Google Scholar 

  • Gleizes A, Gonzalez J.J, Freton P (2005) Topical review, thermal plasma modelling. J Phys D Appl Phys 38:R153–R183

    Article  Google Scholar 

  • Gleizes A, Cressault Y, Teulet P (2010) Mixing rules for thermal plasma properties in mixtures of argon, air and metallic vapors. Plasma Sources Sci Technol 19:055013 (13 pp)

    Article  Google Scholar 

  • Gorse C (1975) Contribution au calcul des propriétés de transport des plasmas des mélanges Ar-H2 et Ar-N2, PhD, University of Limoges (in French)

    Google Scholar 

  • Hirschfelder J.O, Curtiss C.F, Bird R.B (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • IUPAC Subcommission on Plasma Chemistry (1982) Thermodynamic and transport properties of pure and mixed thermal plasmas at LTE. Pure Appl Chem 54(6):1221–1238

    Google Scholar 

  • Lesinski J, Boulos M (1990) Thermodynamic and transport properties of argon, nitrogen and oxygen at atmospheric pressure over the temperature range 300–30,000 K. Internal report, University of Sherbrooke, Quebec

    Google Scholar 

  • Levin E, Partridge H, Stallcop J.R (1989) Collision integrals and high temperature transport properties. RIACS (NASA) Tech Rep 89:43

    Google Scholar 

  • Mason EA, Monchick L (1962) Heat conductivity of polyatomic and polar gases. J Chem Phys 36:1622

    Article  Google Scholar 

  • Mason E.A, Munn R.J, Smith F.J (1967) Transport coefficients of ionized gases. Phys Fluids 10(8):1827–1832

    Article  Google Scholar 

  • Mitchner M, Kruger C.H (1973) Partially ionized gases. Wiley, New York

    Google Scholar 

  • Monchick L (1959) Collision integrals for the exponential repulsive potential. Phys Fluids 2(6):695–700

    Article  MathSciNet  MATH  Google Scholar 

  • Mostaghimi J, Pfender E (1984) Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Process 4(2):129–139

    Article  Google Scholar 

  • Murphy A.B (1993) Diffusion in equilibrium mixtures of ionized gases. Phys Rev E 48:3594

    Article  Google Scholar 

  • Murphy A.B (1994) Erratum: diffusion in equilibrium mixtures of ionized gases (Phys. Rev. E 48, 3594 (1993)). Phys Rev E 50:5145

    Google Scholar 

  • Murphy A.B (1995) Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas. Plasma Chem Plasma Process 15(2):279–307

    Article  Google Scholar 

  • Murphy A.B (1996) A comparison of treatments of diffusion in thermal plasmas. J Phys D Appl Phys 29:1922

    Article  Google Scholar 

  • Murphy A.B (1997) Transport coefficients of helium and argon-helium plasmas. IEEE Trans Plasma Sci 25(5):809–814

    Article  Google Scholar 

  • Murphy A.B (2000) Transport coefficients of hydrogen and argon–hydrogen plasmas. Plasma Chem Plasma Process 20(3):279–297

    Article  Google Scholar 

  • Murphy A.B (2012) Transport coefficients of plasmas in mixtures of nitrogen and hydrogen. Chem Phys 398:64–72

    Article  Google Scholar 

  • Murphy A.B, Arundell CJ (1994) Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chem Plasma Process 14(4):451–490

    Article  Google Scholar 

  • Murphy A.B, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke J.J (2009) Review article, modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006 (20 pp)

    Article  Google Scholar 

  • Neumann W, Sacklowski U (1968) Beitr Plasma Phys 8:57

    Article  Google Scholar 

  • Pateyron B, Aubreton J, Elchinger M.F, Delluc G, Fauchais P (1986) Thermodynamic and transport properties of N2, 02, H2, Ar, He and their mixtures, Internal report LMCTS. University of Limoges, France

    Google Scholar 

  • Pateyron B, Elchinger M.F, Delluc G, Fauchais P (1990) Thermodynamic and transport properties of air and air – Cu at atmospheric pressure. Internal report, LMCTS, University of Limoges

    Google Scholar 

  • Pateyron B, Elchinger M.F, Delluc G, Fauchais P (1992) Thermodynamic and transport properties of Ar-H2 and Ar-He plasma gases for spraying at atmospheric pressure – part 1: properties of the mixtures. Plasma Chem Plasma Process 12(4):421–448

    Article  Google Scholar 

  • Pateyron B, Calve N, Pawłowski L (2013) Influence of water and ethanol on transport properties of the jets used in suspension plasma spraying. Surf Coat Technol 220:257–260

    Article  Google Scholar 

  • Rat V, Aubreton J, Elchinger M.F, Fauchais P (2001) Calculation of combined diffusion coefficients from the simplified theory of transport properties. Plasma Chem Plasma Process 21(3):355–369

    Article  Google Scholar 

  • Reif F (1988) Fundamentals of statistical and thermal physics. McGraw Hill, New York

    Google Scholar 

  • Smith F.J, Munn R.J (1964) Automatic calculation of the transport collision integrals with tables for the Morse potential. J Chem Phys 41(11):3560–3568

    Article  Google Scholar 

  • Sourd B, André P, Aubreton J, Elchinger M.-F (2007) Influence of the excited states of atomic nitrogen N(2D), N(2P) and N(R) on the transport properties of nitrogen. Part II: nitrogen plasma properties. Plasma Chem Plasma Process 27:225–240

    Article  Google Scholar 

  • Wang W.Z, Yan JD, Rong M.Z, Murphy A.B, Spencer J.W (2012) Thermophysical properties of high temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. Part 2: transport coefficients. Plasma Chem Plasma Process 32:495–518

    Article  Google Scholar 

  • Wilke C.R (1950) A viscosity equation for gas mixtures. J Chem Phys 18:517–519

    Article  Google Scholar 

  • Yokomizu Y, Ochiai R, Matsumura T (2009) Electrical and thermal conductivities of high-temperature CO2–CF3I mixture and transient conductance of residual arc during its extinction process. J Phys D Appl Phys 42:215204 (14 pp)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher I. Boulos .

Nomenclature and Greek Symbols

Ax,x

Coefficients for calculating the reactional thermal conductivity

\( \overrightarrow{{\mathrm{A}}_{\upiota}} \)

Vectorial coefficients for calculating the perturbation function ϕi

b

Impact parameter

\( {\overleftrightarrow{\mathrm{B}}}_{\mathrm{i}} \)

Second-order tensor allowing calculation of the perturbation function ϕi

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{c}} \)

Velocity of center of mass (m/s)

cpi

Molar specific heat of species at constant pressure (J/mol.K)

cv

Specific heat at constant volume (J/mole.K)

\( \overrightarrow{{\mathrm{d}}_{\mathrm{i}}^{,}} \)

Diffusion forces

dA

Elementary surface (m2)

\( \mathrm{d}\overrightarrow{\mathrm{r}} \)

Elementary volume in ordinary space (m3)

\( \mathrm{d}\overrightarrow{\mathrm{v}} \)

Elementary volume in velocity space: \( \left(\mathrm{d}\overrightarrow{\mathrm{v}}={\mathrm{dv}}_{\mathrm{x}}{\mathrm{dv}}_{\mathrm{y}}{\mathrm{dv}}_{\mathrm{z}}\right)\left({\mathrm{m}}^3/{\mathrm{s}}^3\right) \)

D

Diffusion coefficient (m2/s)

Di

Scalar coefficients for calculating the perturbation function ϕi

Di,j

Ordinary diffusion coefficients between species i and j (m2/s)

DiT

Thermal diffusion coefficients (m2/K.s)

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{E}}} \)

Combined electric field diffusion coefficient (m2/V.s)

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{P}}} \)

Combined pressure diffusion coefficient (m2/s)

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{T}}} \)

Combined temperature diffusion coefficient (kg/m.s)

\( \overline{{\mathrm{D}}_{\mathrm{AB}}^{\mathrm{x}}} \)

Combined ordinary diffusion coefficient (m2/s)

\( \overline{{\mathrm{X}}_{\mathrm{B}}} \)

Sum of the mole fractions of the species of gas B

Left hand side of Boltzman equation, Eq.45

Right hand side of Boltzman equation, Eq.45

\( \overrightarrow{\mathrm{E}} \)

Electric field (V/m)

E

Externally applied field (V/m)

fi

Distribution function

f i0

Equilibrium distribution function

Fx

Component of the force in the x-direction (N)

g12

Relative velocity \( \left({\mathrm{g}}_{12}=\left|\overrightarrow{{\mathrm{v}}_1}-\overrightarrow{{\mathrm{v}}_2}\right|\left(\mathrm{m}/\mathrm{s}\right)\right) \)

h

Planck’s constant (6.6 × 10−34 W.s2)

Hi

Molar enthalpy of species i (kJ/mol)

H DN

Molar dissociation enthalpy of nitrogen molecule (kJ/mol)

\( {\mathrm{H}}_{{\mathrm{N}}^{+}}^{\mathrm{I}} \)

Molar ionization enthalpy of nitrogen atom (kJ/mol)

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{E}} \)

Energy flux (W/m2)

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{n}} \)

Particle flux (part/m2.s)

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{px}} \)

Momentum flux in x-direction

Jχ

Flux density of χ or net quantity of χ (particles number, transverse momentum, energy, charge) transported across per unit area and unit time

\( {\overrightarrow{\mathrm{J}}}_{\mathrm{x}} \)

Flux of the quantity x

k

Boltzmann constant (k = 1.38 × 10−23 J/K)

Mean free path (m)

z

Mean free path in z-direction (m)

\( {\overline{\mathrm{m}}}_{\mathrm{A}} \)

Number–density–weighted average mass of the species present in gas A

\( {\overline{\mathrm{m}}}_{\mathrm{B}} \)

Number–density–weighted average mass of the species present in gas B

mi

Mass of the particle of chemical species i (kg)

Mi

Atomic mass of chemical species i (kg)

n

Number density (m−3 )

ni

Number density of chemical species i (m−3 )

n i

Mole number of chemical species i

p

Pressure (Pa)

qx

Heat flux due to temperature gradients in x direction (W/m2)

\( \overline{\overline{\mathrm{p}}} \)

Pressure tensor

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{i}} \)

Flux vector for the transport of kinetic energy of particles of species i (J/m2.s)

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{R}} \)

Reactional heat flux vector (J/m2.s)

\( {\overrightarrow{\mathrm{q}}}_{\mathrm{z}} \)

Heat flux vector in z-direction (J/m2.s)

q lsij

Bracket integral

\( {\overline{\mathrm{Q}}}_{\mathrm{ij}}^{\mathrm{ls}} \)

Product of the reduced collision integral by the cross-sectional area (m2)

Q lij

Quantum collision cross section

\( {\mathrm{Q}}^{\mathrm{l}}\left(\overrightarrow{\mathrm{v}}\right) \)

Elastic collision cross section at the degree 1 of the Legendre functions

\( \overrightarrow{\mathrm{r}} \)

Position vector

\( \overrightarrow{{\mathrm{r}}^{*}} \)

Relative position vector \( \left(\overrightarrow{{\mathrm{r}}^{*}}={\mathrm{r}}_1-{\mathrm{r}}_2\right) \) (m)

rm

Distance of closest approach (m)

R

Perfect gas constant (R = 8.32 J/K.mole)

T

Absolute temperature (K)

\( \overrightarrow{\mathrm{u}} \)

Local macroscopic velocity (m/s)

\( {\overrightarrow{\mathrm{U}}}_{\mathrm{i}} \)

Peculiar velocity \( \left(\overrightarrow{{\mathrm{U}}_{\upiota}}=\overrightarrow{{\mathrm{v}}_{\mathrm{i}}}-\overrightarrow{{\mathrm{v}}_0}\right) \) of particles of species i (m/s).

\( {\overrightarrow{\mathrm{U}}}_{\mathrm{ix}} \)

Peculiar velocity in the x-direction

\( <{\overrightarrow{\mathrm{U}}}_{\mathrm{i}}> \)

Diffusion velocity of particles of species i

\( {\overrightarrow{\mathrm{v}}}_{\mathrm{i}} \)

Velocity of particle of species i (m/s)

\( \overrightarrow{\mathrm{v}} \)

Mean velocity of particles (m/s)

\( {\overrightarrow{\mathrm{v}}}_0 \)

Mean flow velocity {m/s)

V(r)

Interaction potential

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}} \)

Relative velocity before collision \( \left({\overrightarrow{\mathrm{V}}}_{\mathrm{i}\mathrm{j}}={\overrightarrow{\mathrm{v}}}_{\mathrm{i}}-{\mathrm{v}}_{\mathrm{j}}\right) \) (m/s)

\( {\overrightarrow{\mathrm{V}}}_{\mathrm{ij}}^{\prime } \)

Relative velocity after collision \( \left({\overrightarrow{\mathrm{V}}}_{\mathrm{i}\mathrm{j}}^{\prime }={\overrightarrow{\mathrm{v}}}_{\mathrm{i}}^{\prime }-{\overrightarrow{\mathrm{v}}}_{\mathrm{j}}^{\prime}\right) \) (m/s)

xi

Mole fraction of species i

Zij

Dimensionless coefficient to calculate the viscosity of a mixture

Zj

Charge number

\( \overline{\upvarepsilon} \)

Mean kinetic energy of particles (J)

ζ

Inverse of the frequency of collision (s)

θ

Angle in spherical coordinates

θ′

Deviation angle

χ

Variable

〈χi

Mean value of χi

\( {\overline{\upchi}}_{\mathrm{i}} \)

Mean value of χi

κ

Thermal conductivity (W/m.K)

\( \overline{\upkappa} \)

Mean integrated thermal conductivity, see Eq. 71 (W/m.K)

κint

Internal thermal conductivity (W/m.K)

κR

Reactional thermal conductivity (W/m.K)

κtr

Translational thermal conductivity (W/m.K)

μ

Gas viscosity (kg/m.s)

μe

Electron mobility (m2/V.s)

μm

Reduced mass \( \left({\upmu}_{\mathrm{m}}={\mathrm{m}}_{\mathrm{i}}{\mathrm{m}}_{\mathrm{j}}/\left({\mathrm{m}}_{\mathrm{i}}+{\mathrm{m}}_{\mathrm{j}}\right)\right) \) (kg)

μmix

Molecular viscosity of a mixture, Eq. (72) (kg/m.s)

ξ

Perturbation parameter: 1/ξ measures the frequency of collisions

ρ

Specific mass (kg/m3)

ρ′

Collision cross section for particles with initial velocities between (\( \overrightarrow{{\mathrm{v}}_1} \) and \( \overrightarrow{{\mathrm{v}}_1} + \) \( \mathrm{d}\overrightarrow{{\mathrm{v}}_1} \)) and (\( \overrightarrow{{\mathrm{v}}_2} \) and \( \overrightarrow{{\mathrm{v}}_2} + \) \( \mathrm{d}\overrightarrow{{\mathrm{v}}_2} \)) and velocities after collision between (\( {\overrightarrow{\mathrm{V}}}_1^{\prime } \) and \( {\overrightarrow{\mathrm{V}}}_1^{\prime }+\mathrm{d}{\overrightarrow{\mathrm{V}}}_1^{\prime } \)) and (\( {\overrightarrow{\mathrm{V}}}_2^{\prime }+\mathrm{d}{\overrightarrow{\mathrm{V}}}_2^{\prime } \))

σe

Electrical conductivity (mhos/m)

σ0

Total collision cross section (m2)

σen

Total collision cross section between electrons and neutral particles (m2)

σij

Total collision cross section between particles of type i and j (m2)

\( \sigma \left(\overrightarrow{\mathrm{v}}\right).\mathrm{d}{\varOmega}^{\prime } \)

Collision cross section for particles emerging after collision with a relative velocity \( {\overrightarrow{\mathrm{V}}}^{\prime } \) into a solid angle range dΩ′ about θ′ and φ′

τzx

Stress in a plane at z in direction x (N/m2)

φ

Angle in spherical coordinates

ϕ i

Perturbation function for calculating the distribution function

Ω lsij

Hirschfelder’s collision integral for particles of species i and j (m2)

\( {\overline{\Omega}}_{\mathrm{ij}}^{\mathrm{ls}} \)

Reduced collision integral for particles of species i and j (m2)

\( {\overrightarrow{\nabla}}_{\mathrm{r}} \)

Position gradient vector, \( \left(\frac{\partial }{\partial \mathrm{x}},\frac{\partial }{\partial \mathrm{y}},\frac{\partial }{\partial \mathrm{z}}\right) \)

\( {\overrightarrow{\nabla}}_{\mathrm{v}} \)

Velocity gradient vector, \( \left(\frac{\partial }{\partial {\mathrm{v}}_{\mathrm{x}}},\frac{\partial }{\partial {\mathrm{v}}_{\mathrm{y}}},\frac{\partial }{\partial {\mathrm{v}}_{\mathrm{z}}}\right) \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Boulos, M.I., Fauchais, P.L., Pfender, E. (2015). Transport Properties of Gases Under Plasma Conditions. In: Handbook of Thermal Plasmas. Springer, Cham. https://doi.org/10.1007/978-3-319-12183-3_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12183-3_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-12183-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Navigation