Log in

Effects of metallic vapor on the properties of an argon arc plasma

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

During thermal plasma processing of materials, vapor generated from injected particulate matter will enter the plasma. Even traces of metallic vapors may have a strong effect on the properties and the behavior of the plasma and on the associated heat flux to the injected particles. In this paper a model system is considered in which an argon plasma at atmospheric pressure is “contaminated” by small amounts of copper vapor. By using the Chapman-Enskog approximation for a multicomponent gas mixture the transport properties are calculated for such a contaminated argon plasma. The results show that there is a drastic effect on the electrical properties. For temperatures below 104 K, the electrical conductivity, for example, increases by more than an order of magnitude if metallic vapor is present. The presence of metallic contaminants is also somewhat felt by the reactional thermal conductivity. In contrast, there is no effect on the heavy-particle properties as long as the percentage of the contaminants remains small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Johnson and E. Pfender,Plasma Chem. Plasma Process. 3, 259 (1983).

    Google Scholar 

  2. H. Abdelhakim, J. P. Dinguiarard, and S. Vacquie,J. Phys. D: Appl. Phys. 13, 1427 (1980).

    Google Scholar 

  3. P. J. Shayler and M. T. C. Fang,J. Phys. D: Appl. Phys. 10, 1659 (1977).

    Google Scholar 

  4. D. R. Airey, R. E. Kinsinger, P. H. Richards, and J. D. Swift,IEEE Trans. Power Appar. Syst. PAS-95, 1 (1976).

    Google Scholar 

  5. K. Jaya Ram,Z. Phys. 271, 217 (1974).

    Google Scholar 

  6. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids, Wiley, New York (1954).

    Google Scholar 

  7. M. Mitchner and C. H. Kruger,Partially Ionized Gases, Wiley, New York (1973).

    Google Scholar 

  8. J. N. Butler and R. S. Brokaw,J. Chem. Phys. 32, 1005 (1960).

    Google Scholar 

  9. H. R. Griem,Phys. Rev. 128, 997 (1962).

    Google Scholar 

  10. H. W. Drawin and I. Felenbok,Data for Plasma in Local Thermodynamic Equilibrium, Gauthier-Villars, Paris (1965).

    Google Scholar 

  11. F. J. Smith and R. J. Munn,J. Chem. Phys. 41, 3560 (1964).

    Google Scholar 

  12. R. S. Devoto,Phys. Fluids 16, 616 (1973).

    Google Scholar 

  13. G. Herzberg,Molecular Spectra and Molecular Structure, Vol. I,Spectra of Diatomic Molecules, 2nd edn., Van Nostrand Reinhold, New York (1950).

    Google Scholar 

  14. R. L. Liboff,Phys. Fluids 2, 40 (1959).

    Google Scholar 

  15. Y. Itikawa,At. Data, Nucl. Data Tables 14, 1 (1974).

    Google Scholar 

  16. S. Trajmar, W. Williams, and S. K. Strivastava,J. Phys. B: At. Mol. Phys. 10, 3323 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mostaghimi-Tehrani, J., Pfender, E. Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Process 4, 129–139 (1984). https://doi.org/10.1007/BF00647193

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00647193

Key words

Navigation