Log in

Transport Coefficients in Water Plasma: Part I: Equilibrium Plasma

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Knowledge of the transport coefficients of steam water plasma is important for modeling plasma flow processes and heat transfer. In this study, calculations of these properties were performed in a temperature range from 400 to 30,000 K and at pressures of 0.5, 1.0, 5.0 and 10 bar. Herein the composition of water plasma was determined at equilibrium. First, the most recent data on potential interactions and elastic differential cross sections for interacting particles were carefully examined in order to choose those most appropriate for determining the collision integrals. Second, we restricted the number of species to ten (e, H, O, H+, O+, O++, H2, O2, OH and H2O) and tested our collision integrals by comparing the thermal conductivity and viscosity to experimental data for water (at low temperatures). Finally, the total thermal conductivity, viscosity and electrical conductivity were calculated for different pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chapman S, Cowling TG (1970) The mathematical theory of non-uniform gases, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  2. Hirschfelder JO, Curtis CF, Bird RB (1964) Molecular theory of gases and liquids, 2nd edn. Wiley, New York

    Google Scholar 

  3. Murphy AB (1993) Phys Rev E 48:3594

    Article  ADS  Google Scholar 

  4. Devoto RS (1966) Phys Fluids 9:1230

    Article  ADS  Google Scholar 

  5. Devoto RS (1967) Phys Fluids 10:2105

    Article  ADS  Google Scholar 

  6. Bonnefoi C (1983) Contribution to the study of methods to solve the Boltzmann’s equation in a two-temperature plasma: example Ar–H2 mixture State Thesis University of Limoges, France (in French)

  7. Rat V, Aubreton J, Elchinger MF, Fauchais P (2001) Plasma Chem Plasma Process 21:355

    Article  Google Scholar 

  8. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2001) Phys Rev E 64:026409

    Article  ADS  Google Scholar 

  9. Rat V, Aubreton J, Elchinger MF, Fauchais P, Murphy AB (2002) Phys Rev E 66:056407

    Article  ADS  Google Scholar 

  10. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22:475

    Article  Google Scholar 

  11. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Vacher D (2002) J Phys D Appl Phys 35:981

    Article  ADS  Google Scholar 

  12. Rainwater JC, Holland PM, Biolsi L (1982) J Chem Phys 77:434

    Article  ADS  Google Scholar 

  13. Monchick L, Mason EA (1961) J Chem Phys 35:1676

    Article  ADS  Google Scholar 

  14. Capitelli M, Cappelletti D, Colonna G, Gorse C, Laricchiuta A, Liuti G, Longo S, Pirani F (2007) Chem Phys 338:62

    Article  ADS  Google Scholar 

  15. Laricchiuta A, Colonna G, Bruno D, Celiberto R, Gorse C, Pirani F, Capitelli M (2007) Chem Phys Lett 445:133

    Article  ADS  Google Scholar 

  16. Cambi R, Cappelletti D, Liuti G, Pirani F (1991) J Chem Phys 95:1852

    Article  ADS  Google Scholar 

  17. Pirani F, Cappelletti D, Liuti G (2001) Chem Phys Lett 350:286

    Article  ADS  Google Scholar 

  18. Pirani F, Maciel GS, Cappelletti D, Aquilanti V (2006) Int Rev Phys Chem 25:165

    Article  Google Scholar 

  19. Cappelletti D, Liuti G, Pirani F (1991) Chem Phys Lett 183:297

    Article  ADS  Google Scholar 

  20. Aquilanti V, Cappelletti D, Pirani F (1996) Chem Phys 209:299

    Article  Google Scholar 

  21. Rat V, André P, Aubreton J, Elchinger MF, Fauchais P, Lefort A (2002) Plasma Chem Plasma Process 22(4):453

    Article  Google Scholar 

  22. Sourd B, Aubreton J, Elchinger MF, Labrot M, Michon U (2006) J Phys D Appl Phys 39:1105

    Article  ADS  Google Scholar 

  23. Devoto RS (1973) Phys Fluids 16:616

    Article  ADS  Google Scholar 

  24. Stallcop JR, Partridge H, Levin E (1996) Phys Rev A 53(2):766

    Article  ADS  Google Scholar 

  25. Stallcop JR, Partridge H, Levin E (2001) Phys Rev A 64(1–12):042722

    Article  ADS  Google Scholar 

  26. Gorfinkiel JD, Morgan LA, Tennyson (2002) J Phys B 35:543

    Article  ADS  Google Scholar 

  27. van Harrevelt R, van Hemert M (2000) J Chem Phys 112(13):5777

    Article  ADS  Google Scholar 

  28. Amaee B, Byers Brown W (1993) Chem Phys 174:351

    Article  Google Scholar 

  29. Rogers S, Wang D, Kuppermann A, Walch S (2000) J Phys Chem A 104:2308

    Article  Google Scholar 

  30. Rosmus P, Palmieri P, Schinke R (2002) J Phys Chem 117:4871

    Article  Google Scholar 

  31. Siebert R, Fleurat-Lessard P, Schinke R, Bittererova M, Farantos SC (2002) J Phys Chem 116:9749

    Article  Google Scholar 

  32. Tashiro M, Schinke R (2003) J Phys Chem 119:10186

    Article  Google Scholar 

  33. Troe J, Ushakov VG (2001) J Chem Phys 115(8):3621

    Article  ADS  Google Scholar 

  34. Xu C, **e D, Zhang DH, Lin SY, Guo H (2005) J Chem Phys 122(1–8):244305

    Article  ADS  Google Scholar 

  35. Litorja M, Ruscic B (1998) J Electron Spectrosc Relat Phenom 97(1–2):131

    Article  Google Scholar 

  36. Lide DR (ed) (1995) CRC handbook of physics and chemistry, 75th edn. CRC Press, Boca Raton

    Google Scholar 

  37. Matsunaga N, Nagashima A (1983) J Chem Phys 87:5268

    Article  Google Scholar 

  38. Todd B, Young JB (2002) J Power Sources 110:186

    Article  Google Scholar 

  39. Daubert TE, Danner RP (1987) Physical and thermodynamic properties of pure chemicals: data compilation. Taylor & Francis, Washington

    Google Scholar 

  40. Hodges MP, Wheatley RJ, Schenter GK, Harvey AH (2004) J Chem Phys 120(2):710

    Article  ADS  Google Scholar 

  41. Plyasunov AV, Shock EL (2003) J Chem Eng Data 48:808

    Article  Google Scholar 

  42. Aquilanti VA, Ascenzi D, Bartolomei M, Cappelletti D, Cavalli S, de Castro Vitores M, Pirani F (1999) Phys Rev Lett 82(1):69

    Article  ADS  Google Scholar 

  43. Aquilanti VA, Ascenzi D, Bartolomei M, Cappelletti D, Cavalli S, de Castro Vitores M, Pirani F (1999) J Am Chem Soc 121:10794

    Article  Google Scholar 

  44. Aquilanti VA, Bartolomei M, Cappelletti D, Carmona-Novillo E, Pirani F (2001) Phys Chem Chem Phys 3:3891

    Article  Google Scholar 

  45. Hernandez-Lamoneda R, Hernandez MI, Campos-Martinez J (2003) Chem Phys Lett 368:709

    Article  ADS  Google Scholar 

  46. Bussery B, Wormer PES (1993) J Chem Phys 99(2):1230

    Article  ADS  Google Scholar 

  47. Air liquide, division scientifique (1976) Encyclopédie des gaz, Elsevier

  48. Harding LB (1991) J Phys Chem 95:8653

    Article  Google Scholar 

  49. Nelson DD, Schiffman A, Nesbitt DJ (1989) J Chem Phys 90:5455

    Article  ADS  Google Scholar 

  50. Delhommelle J, Millié A (2001) Mol Phys 99:619

    Article  ADS  Google Scholar 

  51. Song W, Rossky PJ, Maroncelli M (2003) J Chem Phys 119:9145

    Article  ADS  Google Scholar 

  52. Kong CL (1973) J Chem Phys 59:2464

    Article  ADS  Google Scholar 

  53. Waldman M, Hagler AT (1993) J Comput Chem 14:1077

    Article  Google Scholar 

  54. Stiehler J, Hinze J (1995) J Phys B 28:4055

    Article  ADS  Google Scholar 

  55. Machado AM, Masili M (2004) J Chem Phys 120(16):7505

    Article  ADS  Google Scholar 

  56. Spelsberg D, Meyer W (1998) J Chem Phys 109(22):9802

    Article  ADS  Google Scholar 

  57. Du S, Francisco JS, Schenter GK, Iordanov TD, Garrett BC, Dupuis M, Li J (2006) J Chem Phys 124(1–15):22438

    Google Scholar 

  58. Cybulski SM, Haley TP (2004) J Chem Phys 121(16):7711

    Article  ADS  Google Scholar 

  59. Kihara T, Taylor MH, Hirschfelder JO (1960) Phys Fluids 3(5):715

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Laricchiuta A, Bruno D, Catalfamo C, Pirani F, Colonna G, Diomede P, Pagano D, Gorse C, Longo S, Celiberto R, Giordano D, Capitelli M (2007) Collection of technical papers 39th AIAA Thermophysics conference 1:280

  61. Garcia G, Blanco F, Williart A (2001) Chem Phys Lett 335:227

    Article  ADS  Google Scholar 

  62. Machado L, Ribeiro EMS, Lee MT, Fujimoto MM, Brescansin LM (1999) Phys Rev A 60(2):1199

    Article  ADS  Google Scholar 

  63. Sullivan JP, Gibson JC, Gulley RJ, Buckman SJ (1995) J Phys B 28:4319

    Article  ADS  Google Scholar 

  64. Noble CJ, Burke PG (1992) Phys Rev Lett 68(13):2011

    Article  ADS  Google Scholar 

  65. Randell J, Lunt SL, Mrotzek G, Ziesel JP, Field D (1994) J Phys B 27:2369

    Article  ADS  Google Scholar 

  66. Itikawa Y, Ichimura A, Onda K, Sakimoto K, Takayanagi K, Hatano Y, Hayashi M, Nishimura H, Tsurubuchi S (1989) J Phys Chem Ref Data 18(1):23

    Article  ADS  Google Scholar 

  67. Sobrinho AMC, Lozano NBH, Lee MT (2004) Phys Rev A 70(1–6):032717

    Article  ADS  Google Scholar 

  68. Chen X, Morgan LA (1997) J Phys B 30:3709

    Article  ADS  Google Scholar 

  69. Itikawa Y, Mason N (2005) J Phys Chem Ref Data 34(1):1

    Article  ADS  Google Scholar 

  70. Cho H, Park YS, Tanaka H, Buckman SJ (2004) J Phys B 37:625

    Article  ADS  Google Scholar 

  71. Faure A, Corfinkiel JD, Tennyson J (2004) J Phys B 37:801

    Article  ADS  Google Scholar 

  72. Křenek P (2008) Plasma Chem Plasma Process 28:107

    Article  Google Scholar 

  73. Wright MJ, Hwang HH, Schwenke DW (2007) AIAA J 45:281

    Article  ADS  Google Scholar 

  74. Sourd B, André P, Aubreton J, Elchinger M-F (2007) Plasma Chem Plasma Process 27:225

    Article  Google Scholar 

  75. Rat V, Aubreton J, Elchinger MF, Fauchais P (2001) J. Phys D 34:2191

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Elchinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubreton, J., Elchinger, M.F. & Vinson, J.M. Transport Coefficients in Water Plasma: Part I: Equilibrium Plasma. Plasma Chem Plasma Process 29, 149–171 (2009). https://doi.org/10.1007/s11090-008-9165-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-008-9165-8

Keywords

Navigation