Log in

Early Increased Bradykinin 1 Receptor Contributes to Hemorrhagic Transformation After Ischemic Stroke in Type 1 Diabetic Rats

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Hemorrhagic transformation (HT) is a major complication of ischemic stroke and further deteriorates neurological outcomes. Bradykinin 1 receptor (B1R) has been proven to mediate vasculo-toxicity in various experimental models. However, its role in the development of HT after stroke remains unclear. We detected the B1R expression in brain tissues with or without HT in a rat model of cerebral ischemia/reperfusion (I/R) with type 1 diabetes, showing higher B1R expression in the hemorrhagic areas than the ischemic tissues. Then, B1R agonist or antagonist was administrated intravenously just before reperfusion to investigate its effect on HT and the underlying molecular mechanism. Administration of low (300 nmol/kg) or high (1 μmol/kg) dose of B1R antagonist mitigated hemorrhage, improved neurobehavioral deficits, and preserved blood-brain-barrier (BBB) integrity after reperfusion for 8 h whereas the 300 nmol/kg of B1R agonist aggravated these outcomes, though only the high does of B1R antagonist affected the infarction volume. Extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation was increased by B1R activation but decreased by B1R inhibition, which mediated B1R toxicity on BBB disruption and ischemia-related HT. Furthermore, B1R activation facilitated the mRNA and protein expressions of MMP-9 in the hemorrhagic tissues, and these increases were blocked by both ERK inhibitor U0126 and NF-κB inhibitor PDTC. U0126 also remarkably decreased the B1R-induced NF-κB/p65 activation. We concluded that upregulated B1R may contribute to early HT after I/R in type 1 diabetic rats via ERK1/2/NF-κB/MMP-9 pathway. B1R inhibition could be an encouraging therapeutic strategy to withstand HT after ischemic stroke in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Poppe AY, Majumdar SR, Jeerakathil T, Ghali W, Buchan AM, Hill MD. Admission hyperglycemia predicts a worse outcome in stroke patients treated with intravenous thrombolysis. Diabetes Care. 2009;32:617–22.

    Article  PubMed  Google Scholar 

  2. Paciaroni M, Agnelli G, Caso V, Corea F, Ageno W, Alberti A, et al. Acute hyperglycemia and early hemorrhagic transformation in ischemic stroke. Cerebrovasc Dis. 2009;28:119–23.

    Article  CAS  PubMed  Google Scholar 

  3. Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood-brain barrier dysfunction. Stroke. 2007;38:1044–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu Q, Ma Q, Zhan Y, He Z, Tang J, Zhou C, et al. Isoflurane enhanced hemorrhagic transformation by impairing antioxidant enzymes in hyperglycemic rats with middle cerebral artery occlusion. Stroke. 2011;42:1750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Regoli D, Plante GE. Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther. 2012;135:94–111.

    Article  CAS  PubMed  Google Scholar 

  6. Cruwys SC, Garrett NE, Perkins MN, Blake DR, Kidd BL. The role of bradykinin B1 receptors in the maintenance of intra-articular plasma extravasation in chronic antigen-induced arthritis. Br J Pharmacol. 1994;113:940–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abdouh M, Talbot S, Couture R, Hassessian HM. Retinal plasma extravasation in streptozotocin-diabetic rats mediated by kinin B(1) and B(2) receptors. Br J Pharmacol. 2008;154:136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Austinat M, Braeuninger S, Pesquero JB, Brede M, Bader M, Stoll G, et al. Blockade of bradykinin receptor B1 but not bradykinin receptor B2 provides protection from cerebral infarction and brain edema. Stroke. 2009;40:285–93.

    Article  CAS  PubMed  Google Scholar 

  9. Raslan F, Schwarz T, Meuth SG, Austinat M, Bader M, Renné T, et al. Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood–brain barrier leakage and inflammation. J Cereb Blood Flow Metab. 2010;30:1477–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westermann D, Walther T, Savvatis K, Escher F, Sobirey M, Riad A, et al. Gene deletion of the kinin receptor B1 attenuates cardiac inflammation and fibrosis during the development of experimental diabetic cardiomyopathy. Diabetes. 2009;58:1373–81.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53–65.

    Article  PubMed  Google Scholar 

  12. Sawe N, Steinberg G, Zhao H. Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res. 2008;86:1659–69.

    Article  CAS  PubMed  Google Scholar 

  13. Mage M, Pécher C, Neau E, Cellier E, Dos Reiss ML, Schanstra JP, et al. Induction of B1 receptors in streptozotocin diabetic rats: possible involvement in the control of hyperglycemia-induced glomerular Erk 1 and 2 phosphorylation. Can J Physiol Pharmacol. 2002;80:328–33.

    Article  CAS  PubMed  Google Scholar 

  14. Potier L, Waeckel L, Vincent M-P, Chollet C, Gobeil F, Marre M, et al. Selective kinin receptor agonists as cardioprotective agents in myocardial ischemia and diabetes. J Pharmacol Exp Ther. 2013;346:23–30.

    Article  CAS  PubMed  Google Scholar 

  15. Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim K-W, et al. Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des. 2012;18:3645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arai K, Lee SR, Lo EH. Essential role for ERK mitogen-activated protein kinase in matrix metalloproteinase-9 regulation in rat cortical astrocytes. Glia. 2003;43:254–64.

    Article  PubMed  Google Scholar 

  17. Longa EZ, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989;20:84–91.

    Article  CAS  PubMed  Google Scholar 

  18. Cote J, Bovenzi V, Savard M, Dubuc C, Fortier A, Neugebauer W, et al. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One. 2012;7:e37485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi R, Yuan K, Hu B, Sang H, Zhou L, **e Y, et al. Tissue Kallikrein alleviates cerebral ischemia-reperfusion injury by activating the B2R-ERK1/2-CREB-Bcl-2 signaling pathway in diabetic rats. Oxidative Med Cell Longev. 2016;1843201

  20. Couture R, Blaes N, Girolami JP. Kinin receptors in vascular biology and pathology. Curr Vasc Pharmacol. 2014;12:223–48.

    Article  CAS  PubMed  Google Scholar 

  21. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–11.

    Article  CAS  PubMed  Google Scholar 

  22. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739:88–96.

    Article  CAS  PubMed  Google Scholar 

  23. Muranyi M, Fujioka M, He Q, Han A, Yong G, Csiszar K, et al. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes. 2003;52:481–6.

    Article  CAS  PubMed  Google Scholar 

  24. Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption inAlzheimer's disease. Brain Pathol. 2013;23:303–10.

    Article  PubMed  Google Scholar 

  25. Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. Int Rev Cytol. 2006;248:261–98.

    Article  CAS  PubMed  Google Scholar 

  26. Moon SK, Cha BY, Kim CH. ERK1/2 mediates TNF-alpha-induced matrix metalloproteinase-9 expression in human vascular smooth muscle cells via the regulation of NF-kappaB and AP-1: involvement of the ras dependent pathway. J Cell Physiol. 2004;198:417–27.

    Article  CAS  PubMed  Google Scholar 

  27. Schanstra JP, Bataille E, Marin Castano ME, Barascud Y, Hirtz C, Pesquero JB, et al. The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-kappaB and induces homologous upregulation of the bradykinin B1-receptor in cultured human lung fibroblasts. J Clin Invest. 1998;101:2080–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campos MM, Souza GE, Calixto JB. In vivo B1 kinin-receptor upregulation. Evidence for involvement of protein kinases and nuclear factor kappaB pathways. Br J Pharmacol. 127:1851–9.

  29. Larrue V, von Kummer RR, Muller A, Bluhmki E. Risk factors for severe hemorrhagic transformation in ischemic stroke patients treated with recombinant tissue plasminogen activator: a secondary analysis of the European-Australasian acute stroke study (ECASS II). Stroke. 1999;32:438–41.

    Article  Google Scholar 

  30. Chen C, Manaenko A, Zhan Y, Liu W, Ostrowki R, Tang J, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience. 2010;169:402–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang F, Lin Y, Huang H, Sun J, Wen S, Lou M. Rosiglitazone attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal ischemia in rats. Neuroscience. 2013;250:651–7.

    Article  CAS  PubMed  Google Scholar 

  32. Paciaroni M, Agnelli G, Corea F, Ageno W, Alberti A, Lanari A, et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome results of a prospective multicenter study. Stroke. 2008;39:2249–56.

    Article  PubMed  Google Scholar 

  33. Bruno A, Levine S, Frankel M, Brott T, Lin Y, Tilley B, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA stroke trial. Neurology. 2002;59:669–74.

    Article  CAS  PubMed  Google Scholar 

  34. Gloor SM, Wachtel M, Bolliger MF, Ishihara H, Landmann R, Frei K. Molecular and cellular permeability control at the blood–brain barrier. Brain Res Rev. 2001;36:258–64.

    Article  CAS  PubMed  Google Scholar 

  35. Schöller K, Feiler S, Anetsberger S, Kim SW, Plesnila N. Contribution of bradykinin receptors to the development of secondary brain damage after experimental subarachnoid hemorrhage. Neurosurgery. 2011;68:1118–23.

    Article  PubMed  Google Scholar 

  36. Cayla C, Todiras M, Iliescu R, Saul VV, Gross V, Pilz B, et al. Mice deficient for both kinin receptors are normotensive and protected from endotoxin-induced hypotension. FASEB J. 2007;21:1689–98.

    Article  CAS  PubMed  Google Scholar 

  37. Emanueli C, Chao J, Regoli D, Chao L, Ni A, Madeddu P. The bradykinin B1 receptor and the central regulation of blood pressure in spontaneously hypertensive rats. Br J Pharmacol. 1999;126:1769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mori MA, Araujo RC, Reis FC, Sgai DG, Fonseca RG, Barros CC, et al. Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity. Diabetes. 2008;57:1491–500.

    Article  CAS  PubMed  Google Scholar 

  39. Araujo RC, Mori MA, Merino VF, Bascands JL, Schanstra JP, Zollner RL, et al. Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function. Biol Chem. 2006;387:431–6.

    Article  CAS  PubMed  Google Scholar 

  40. Barros CC, Haro A, Russo FJ, Schadock I, Almeida SS, Ribeiro RA, et al. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes. PLoS One. 2012;7:e40573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noshita N, Sugawara T, Hayashi T, Lewen A, Omar G, Chan PH. Copper/zinc superoxide dismutase attenuates neuronal cell death by preventing extracellular signal-regulated kinase activation after transient focal cerebral ischemia in mice. J Neurosci. 2002;22:7923–30.

    CAS  PubMed  Google Scholar 

  42. Wang ZQ, Wu DC, Huang FP, Yang GY. Inhibition of MEK/ERK 1/2 pathway reduces pro-inflammatory cytokine interleukin-1 expression in focal cerebral ischemia. Brain Res. 2004;996:55–66.

    Article  CAS  PubMed  Google Scholar 

  43. Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM. Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/−2 and Akt pathways. FASEB J. 2005;19:2026–8.

    CAS  PubMed  Google Scholar 

  44. Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci. 2000;20:5775–81.

    CAS  PubMed  Google Scholar 

  45. Chiu PS, Lai SC. Matrix metalloproteinase-9 leads to blood-brain barrier leakage in mice with eosinophilic meningoencephalitis caused by Angiostrongylus cantonensis. Acta Trop. 2014;140C:141–50.

    Article  Google Scholar 

  46. Roe K, Kumar M, Lum S, Orillo B, Nerurkar VR, Verma S. West Nile virus-induced disruption of the blood-brain barrier in mice is characterized by the degradation of the junctional complex proteins and increase in multiple matrix metalloproteinases. J Gen Virol. 2012;93:1193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol. 2007;82:1375–81.

    Article  PubMed  Google Scholar 

  48. Cruise L, Ho LK, Veitch K, Fuller G, Morris BJ. Kainate receptors activate NF-kappaB via MAP kinase in striatal neurones. Neuroreport. 2000;11:395–8.

    Article  CAS  PubMed  Google Scholar 

  49. Jickling GC, Liu D, Stamova B, Ander BP, Zhan X, Lu A, et al. Hemorrhagic transformation after ischemic stroke in animals and humans. J Cereb Blood Flow Metab. 2014;34:185–99.

    Article  CAS  PubMed  Google Scholar 

  50. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39:1121–6.

    Article  CAS  PubMed  Google Scholar 

  51. Ehrenfeld P, Matus CE, Pavicic F, Toledo C, Nualart F, Gonzalez CB, et al. Kinin B1 receptor activation turns on exocytosis of matrix metalloprotease-9 and myeloperoxidase in human neutrophils: involvement of mitogen-activated protein kinase family. J Leukoc Biol. 2009;86:1179–89.

    Article  CAS  PubMed  Google Scholar 

  52. Kintsurashvili E, Duka A, Ignjacev I, Pattakos G, Gavras I, Gavras H. Age-related changes of bradykinin B1 and B2 receptors in rat heart. Am J Physiol Heart Circ Physiol. 2005;289:H202–5.

    Article  CAS  PubMed  Google Scholar 

  53. Fagan SC, Lapchak PA, Liebeskind DS, Ishrat T, Ergul A. Recommendations for preclinical research in hemorrhagic transformation. Transl Stroke Res. 2013;4:322–7.

    Article  PubMed  Google Scholar 

  54. Ifuku M, Farber K, Okuno Y, Yamakawa Y, Miyamoto T, Nolte C, et al. Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J Neurosci. 2007;27:13065–73.

    Article  CAS  PubMed  Google Scholar 

  55. Su J, Cui M, Tang Y, Zhou H, Liu L, Dong Q. Blockade of bradykinin B2 receptor more effectively reduces postischemic blood–brain barrier disruption and cytokines release than B1 receptor inhibition. Biochem Biophys Res Commun. 2009;388:205–11.

    Article  CAS  PubMed  Google Scholar 

  56. Ghebrehiwet B, Ji Y, Valentino A, Pednekar L, Ramadass M, Habiel D, et al. Soluble gC1qR is an autocrine signal that induces B1R expression on endothelial cells. J Immunol. 2014;192:377–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Liu or Renliang Zhang.

Ethics declarations

Funding

This study was supported by the National Natural Science Foundation of China (No. 81100870, 81400332) and Natural Science Foundation of Jiangsu Province (No. BK2011663).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal experimental procedures were conducted according to the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, revised 1996) and conformed to the Institutional Animal Care and Use Committee of the Nan**g University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, H., Qiu, Z., Cai, J. et al. Early Increased Bradykinin 1 Receptor Contributes to Hemorrhagic Transformation After Ischemic Stroke in Type 1 Diabetic Rats. Transl. Stroke Res. 8, 597–611 (2017). https://doi.org/10.1007/s12975-017-0552-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-017-0552-4

Keywords

Navigation