Log in

Recommendations for Preclinical Research in Hemorrhagic Transformation

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Hemorrhagic transformation (HT) is an important complication of ischemic stroke and is responsible for most of the mortality associated with acute reperfusion therapy. Although many important publications address the preclinical models of ischemic stroke, there are no current recommendations on the conduct of research aimed at understanding the mechanisms and consequences of HT. The purpose of this review is to present the various models used in HT research, the clinical correlates, and the experimental variables known to influence the quantitation of HT in preclinical investigation. Lastly, recommendations for the conduct of preclinical research in HT are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Del Zoppo GJ, Zeumer H, Harker LA. Thrombolytic therapy in stroke: possibilities and hazards. Stroke. 1986;17(4):595–607.

    Article  PubMed  Google Scholar 

  2. Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, et al. Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke. 1999;30(11):2280–4.

    Article  PubMed  CAS  Google Scholar 

  3. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    Article  PubMed  CAS  Google Scholar 

  4. No Author. Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med. 1995;333(24):1581–7.

    Google Scholar 

  5. Eissa A, Krass I, Bajorek BV. Optimizing the management of acute ischaemic stroke: a review of the utilization of intravenous recombinant tissue plasminogen activator (tPA). J Clin Pharm Ther. 2012. doi:10.1111/j.1365-2710.2012.01366.x.

  6. Heo JH, Lucero J, Abumiya T, Koziol JA, Copeland BR, del Zoppo GJ. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab. 1999;19(6):624–33.

    Article  PubMed  CAS  Google Scholar 

  7. del Zoppo GJ, Frankowski H, Gu YH, Osada T, Kanazawa M, Milner R, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab. 2012;32(5):919–32.

    Article  PubMed  CAS  Google Scholar 

  8. Kamijyo Y, Garcia JH, Cooper J. Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol. 1977;36(2):338–50.

    Article  PubMed  CAS  Google Scholar 

  9. de Courten-Myers GM, Kleinholz M, Wagner KR, Myers RE. Fatal strokes in hyperglycemic cats. Stroke. 1989;20(12):1707–15.

    Article  PubMed  Google Scholar 

  10. Lapchak PA, Chapman DF, Zivin JA. Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke. 2000;31(12):3034–40.

    Article  PubMed  CAS  Google Scholar 

  11. Yenari MA, Lee LK, Beaulieu C, Sun GH, Kunis D, Chang D, et al. Thrombolysis with reteplase, an unglycosylated plasminogen activator variant, in experimental embolic stroke. J Stroke Cerebrovasc Dis. 1998;7(3):179–86.

    Article  PubMed  CAS  Google Scholar 

  12. Asahi M, Asahi K, Wang X, Lo EH. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trap** after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2000;20(3):452–7.

    Article  PubMed  CAS  Google Scholar 

  13. Chen CH, Manaenko A, Zhan Y, Liu WW, Ostrowki RP, Tang J, et al. Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. Neuroscience. 2010;169(1):402–14.

    Article  PubMed  CAS  Google Scholar 

  14. Sun L, Zhou W, Heiland S, Marti HH, Veltkamp R. A translationally relevant thromboembolic stroke model for the study of secondary hemorrhage after thrombolysis in rats. Brain Res. 2011;1368:346–54.

    Article  PubMed  CAS  Google Scholar 

  15. Qin Z, Karabiyikoglu M, Hua Y, Silbergleit R, He Y, Keep RF, et al. Hyperbaric oxygen-induced attenuation of hemorrhagic transformation after experimental focal transient cerebral ischemia. Stroke. 2007;38(4):1362–7.

    Article  PubMed  CAS  Google Scholar 

  16. Fagan SC, Kozak A, Hill WD, Pollock DM, Xu L, Johnson MH, et al. Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens. 2006;24(3):535–9.

    Article  PubMed  CAS  Google Scholar 

  17. Murata Y, Rosell A, Scannevin RH, Rhodes KJ, Wang X, Lo EH. Extension of the thrombolytic time window with minocycline in experimental stroke. Stroke. 2008;39(12):3372–7.

    Article  PubMed  CAS  Google Scholar 

  18. Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y. Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol. 2008;213(1):196–201.

    Article  PubMed  CAS  Google Scholar 

  19. Lu A, Clark JF, Broderick JP, Pyne-Geithman GJ, Wagner KR, Khatri P, et al. Mechanical reperfusion is associated with post-ischemic hemorrhage in rat brain. Exp Neurol. 2009;216(2):407–12.

    Article  PubMed  Google Scholar 

  20. Hu Q, Ma Q, Zhan Y, He Z, Tang J, Zhou C, et al. Isoflurane enhanced hemorrhagic transformation by impairing antioxidant enzymes in hyperglycemic rats with middle cerebral artery occlusion. Stroke. 2011;42(6):1750–6.

    Article  PubMed  CAS  Google Scholar 

  21. Fagan SC, Garcia JH. Hemorrhagic transformation in focal cerebral ischemia: influence of time to artery reopening and tissue plasminogen activator. Pharmacotherapy. 1999;19(2):139–42.

    Article  PubMed  CAS  Google Scholar 

  22. Fagan SC, Nagaraja TN, Fenstermacher JD, Zheng J, Johnson M, Knight RA. Hemorrhagic transformation is related to the duration of occlusion and treatment with tissue plasminogen activator in a nonembolic stroke model. Neurol Res. 2003;25(4):377–82.

    Article  PubMed  CAS  Google Scholar 

  23. Henning EC, Latour LL, Hallenbeck JM, Warach S. Reperfusion-associated hemorrhagic transformation in SHR rats: evidence of symptomatic parenchymal hematoma. Stroke. 2008;39(12):3405–10.

    Article  PubMed  Google Scholar 

  24. Crumrine RC, Marder VJ, Taylor GM, Lamanna JC, Tsipis CP, Scuderi P, et al. Intra-arterial administration of recombinant tissue-type plasminogen activator (rt-PA) causes more intracranial bleeding than does intravenous rt-PA in a transient rat middle cerebral artery occlusion model. Exp Transl Stroke Med. 2011;3(1):10.

    Article  PubMed  CAS  Google Scholar 

  25. Choudhri TF, Hoh BL, Solomon RA, Connolly Jr ES, Pinsky DJ. Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke. 1997;28(11):2296–302.

    Article  PubMed  CAS  Google Scholar 

  26. Jia L, Chopp M, Zhang L, Lu M, Zhang Z. Erythropoietin in combination of tissue plasminogen activator exacerbates brain hemorrhage when treatment is initiated 6 hours after stroke. Stroke. 2010;41(9):2071–6.

    Article  PubMed  CAS  Google Scholar 

  27. Ishiguro M, Kawasaki K, Suzuki Y, Ishizuka F, Mishiro K, Egashira Y, et al. A Rho kinase (ROCK) inhibitor, fasudil, prevents matrix metalloproteinase-9-related hemorrhagic transformation in mice treated with tissue plasminogen activator. Neuroscience. 2012;220:302–12.

    Article  PubMed  CAS  Google Scholar 

  28. Yenari MA, Xu L, Tang XN, Qiao Y, Giffard RG. Microglia potentiate damage to blood–brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke. 2006;37(4):1087–93.

    Article  PubMed  Google Scholar 

  29. McColl BW, Rose N, Robson FH, Rothwell NJ, Lawrence CB. Increased brain microvascular MMP-9 and incidence of haemorrhagic transformation in obese mice after experimental stroke. J Cereb Blood Flow Metab. 2010;30(2):267–72.

    Article  PubMed  CAS  Google Scholar 

  30. Ishiguro M, Mishiro K, Fujiwara Y, Chen H, Izuta H, Tsuruma K, et al. Phosphodiesterase-III inhibitor prevents hemorrhagic transformation induced by focal cerebral ischemia in mice treated with tPA. PLoS One. 2010;5(12):e15178.

    Article  PubMed  CAS  Google Scholar 

  31. Haddad M, Beray-Berthat V, Coqueran B, Palmier B, Szabo C, Plotkine M, et al. Reduction of hemorrhagic transformation by PJ34, a poly(ADP-ribose)polymerase inhibitor, after permanent focal cerebral ischemia in mice. Eur J Pharmacol. 2008;588(1):52–7.

    Article  PubMed  CAS  Google Scholar 

  32. Garcia-Yebenes I, Sobrado M, Zarruk JG, Castellanos M, de la Perez OS, Davalos A, et al. A mouse model of hemorrhagic transformation by delayed tissue plasminogen activator administration after in situ thromboembolic stroke. Stroke. 2011;42(1):196–203.

    Article  PubMed  CAS  Google Scholar 

  33. Howells DW, Porritt MJ, Rewell SS, O’Collins V, Sena ES, van der Worp HB, et al. Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010;30(8):1412–31.

    Article  PubMed  CAS  Google Scholar 

  34. Bacigaluppi M, Comi G, Hermann DM. Animal models of ischemic stroke. Part two: modeling cerebral ischemia. Open Neurol J. 2010;4:34–8.

    PubMed  Google Scholar 

  35. Guan W, Kozak A, El-Remessy AB, Johnson MH, Pillai BA, Fagan SC. Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res. 2011;2(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  36. Bowes MP, Zivin JA, Thomas GR, Thibodeaux H, Fagan SC. Acute hypertension, but not thrombolysis, increases the incidence and severity of hemorrhagic transformation following experimental stroke in rabbits. Exp Neurol. 1996;141(1):40–6.

    Article  PubMed  CAS  Google Scholar 

  37. Elewa HF, Kozak A, Johnson MH, Ergul A, Fagan SC. Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection. J Hypertens. 2007;25(4):855–9.

    Article  PubMed  CAS  Google Scholar 

  38. Guan W, Kozak A, Fagan SC. Drug repurposing for vascular protection after acute ischemic stroke. Acta Neurochir Suppl. 2011;111:295–8.

    Article  PubMed  Google Scholar 

  39. Kozak W, Kozak A, Johnson MH, Elewa HF, Fagan SC. Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose–response study. J Pharmacol Exp Ther. 2008;326(3):773–82.

    Article  PubMed  CAS  Google Scholar 

  40. Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, et al. Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes. BMC Neurol. 2007;7:33.

    Article  PubMed  CAS  Google Scholar 

  41. Elgebaly MM, Ogbi S, Li W, Mezzetti EM, Prakash R, Johnson MH, et al. Neurovascular injury in acute hyperglycemia and diabetes: a comparative analysis in experimental stroke. Transl Stroke Res. 2011;2(3):391–8.

    Article  PubMed  Google Scholar 

  42. Elgebaly MM, Prakash R, Li W, Ogbi S, Johnson MH, Mezzetti EM, et al. Vascular protection in diabetic stroke: role of matrix metalloprotease-dependent vascular remodeling. J Cereb Blood Flow Metab. 2010;30(12):1928–38.

    Article  PubMed  CAS  Google Scholar 

  43. Lo EH. Experimental models, neurovascular mechanisms and translational issues in stroke research. Br J Pharmacol. 2008;153 Suppl 1:S396–405.

    PubMed  CAS  Google Scholar 

  44. Kozak A, Ergul A, El-Remessy AB, Johnson MH, Machado LS, Elewa HF, et al. Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke. 2009;40(5):1870–6.

    Article  PubMed  CAS  Google Scholar 

  45. de Courten-Myers GM, Kleinholz M, Holm P, DeVoe G, Schmitt G, Wagner KR, et al. Hemorrhagic infarct conversion in experimental stroke. Ann Emerg Med. 1992;21(2):120–6.

    Article  PubMed  Google Scholar 

  46. Tejima E, Katayama Y, Suzuki Y, Kano T, Lo EH. Hemorrhagic transformation after fibrinolysis with tissue plasminogen activator: evaluation of role of hypertension with rat thromboembolic stroke model. Stroke. 2001;32(6):1336–40.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang F, Wang S, Luo Y, Ji X, Nemoto EM, Chen J. When hypothermia meets hypotension and hyperglycemia: the diverse effects of adenosine 5′-monophosphate on cerebral ischemia in rats. J Cereb Blood Flow Metab. 2009;29(5):1022–34.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang L, Zhang ZG, Zhang RL, Lu M, Adams J, Elliott PJ, et al. Postischemic (6-hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32(12):2926–31.

    Article  PubMed  CAS  Google Scholar 

  49. Lapchak PA. A clinically relevant rabbit embolic stroke model for acute ischemic stroke therapy development: mechanisms and targets. In: Lapchak PA, Zhang JH, editors. Translational stroke research: from target selection to clinical trials. New York: Springer Series in Translational Stroke Research: Springer; 2012. p. 541–84.

    Chapter  Google Scholar 

  50. Dijkhuizen RM, Asahi M, Wu O, Rosen BR, Lo EH. Rapid breakdown of microvascular barriers and subsequent hemorrhagic transformation after delayed recombinant tissue plasminogen activator treatment in a rat embolic stroke model. Stroke. 2002;33(8):2100–4.

    Article  PubMed  CAS  Google Scholar 

  51. Hornig CR, Dorndorf W, Agnoli AL. Hemorrhagic cerebral infarction—a prospective study. Stroke. 1986;17(2):179–85.

    Article  PubMed  CAS  Google Scholar 

  52. Renou P, Sibon I, Tourdias T, Rouanet F, Rosso C, Galanaud D, et al. Reliability of the ECASS radiological classification of postthrombolysis brain haemorrhage: a comparison of CT and three MRI sequences. Cerebrovasc Dis. 2010;29(6):597–604.

    Article  PubMed  CAS  Google Scholar 

  53. Lapchak PA. Translational stroke research using a rabbit embolic stroke model: a correlative analysis hypothesis for novel therapy development. Transl Stroke Res. 2010;1(2):96–107.

    Article  PubMed  Google Scholar 

  54. Turner RJ, Jickling GC, Sharp FR. Are underlying assumptions of current animal models of human stroke correct: from STAIRs to high hurdles? Transl Stroke Res. 2011;2(2):138–43.

    Article  PubMed  Google Scholar 

  55. Machado LS, Sazonova IY, Kozak A, Wiley DC, El-Remessy AB, Ergul A, et al. Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke. 2009;40(9):3028–33.

    Article  PubMed  CAS  Google Scholar 

  56. Park JH, Ko Y, Kim WJ, Jang MS, Yang MH, Han MK, et al. Is asymptomatic hemorrhagic transformation really innocuous? Neurology. 2012;78(6):421–6.

    Article  PubMed  CAS  Google Scholar 

  57. Copin JC, Gasche Y. Effect of the duration of middle cerebral artery occlusion on the risk of hemorrhagic transformation after tissue plasminogen activator injection in rats. Brain Res. 2008;1243:161–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported grants from the National Institutes of Health (SCF, RO1 NS063965; AE, R21 NS070239 DSL P50NS044378, K24NS072272; PAL, U01 NS060685), Veterans Affairs Merit Review (SCF, BX000891; AE, BX000347), and American Heart Association Established Investigator Award (AE, 0740002N).

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Fagan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fagan, S.C., Lapchak, P.A., Liebeskind, D.S. et al. Recommendations for Preclinical Research in Hemorrhagic Transformation. Transl. Stroke Res. 4, 322–327 (2013). https://doi.org/10.1007/s12975-012-0222-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0222-5

Keywords

Navigation