Log in

Quantitative analysis of highly efficient PCF-based sensor for early detection of breast cancer cells in THz regime

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Now a day’s breast cancer is a concern in modern science and medicine, consequently establishing an effective and precise breast cancer cell detection approach becomes extremely important. Photonic crystal fiber-based sensor makes this approach smoother and more innovative. A unique THz sensor based on hollow core photonic crystal fiber facilitating chemical analytes detection within terahertz frequency range has been reported in the present work. Efficiency of the presented sensor has been investigated numerically applying simulation technology based on the finite element technique. A photonic crystal fiber biosensor is designed to detect cancerous cells, all the proposed combinations have been implemented by using finite element approach, and the performance of the proposed model has been evaluated by MATLAB software. The reported sensor could be operated in the frequency range 1.0–2.0 THz. Simulation results are found to be good enough, with highly birefringence (0.0020), lower confinement loss (17.33 × 10–9 dB/cm), lower effective area (3.04 × 10–8 µm2), a higher relative sensitivity (65.53%) along x-axis, relative sensitivity (53.63%) along y-axis, effective refractive index (1.376), nonlinear coefficient (6.38 × 1016) and dispersion (0.1588 ± 0.0121). Furthermore, the proposed sensor's manufacturing capabilities remain assured by its ease of implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be available made on request.

References

  1. X.D. Wang, O.S. Wolfbeis, Fiber-optic chemical sensors and biosensors (2008–2012). Anal Chem 85, 487–508 (2013). https://doi.org/10.1021/ac303159b

    Article  Google Scholar 

  2. F. Wu, P.A. Thomas, V.G. Kravets et al., Layered material platform for surface plasmon resonance biosensing. Sci Rep 9, 1–10 (2019). https://doi.org/10.1038/s41598-019-56105-7

    Article  ADS  Google Scholar 

  3. J.D. Shephard, W.N. MacPherson, R.R.J. Maier et al., Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt Express 13, 7139 (2005). https://doi.org/10.1364/opex.13.007139

    Article  ADS  Google Scholar 

  4. A. Ramola, A. Marwaha, S. Singh, Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A Mater. Sci. Process. 127 (2021). https://doi.org/10.1007/s00339-021-04785-2

  5. P.J. Roberts, F. Couny, H. Sabert et al., Ultimate low loss of hollow-core photonic crystal fibres. Opt Express 13, 236 (2005). https://doi.org/10.1364/opex.13.000236

    Article  ADS  Google Scholar 

  6. A. Kumar Shakya, S. Singh, Design of novel Penta core PCF SPR RI sensor based on fusion of IMD and EMD techniques for analysis of water and transformer oil. Meas. J. Int. Meas. Confed. 188, 110513 (2022). https://doi.org/10.1016/j.measurement.2021.110513

  7. S. Yadav, P. Lohia, D.K. Dwivedi, A Novel Approach for Identification of Cancer Cells Using a Photonic Crystal Fiber-Based Sensor in the Terahertz Regime. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01887. https://doi.org/10.1007/s11468-023-01887-w

  8. A. Upadhyay, S. Singh, Y.K. Prajapati, R. Tripathi, Numerical analysis of large negative dispersion and highly birefringent photonic crystal fiber. Optik (Stuttg) 218, 164997 (2020). https://doi.org/10.1016/j.ijleo.2020.164997

  9. K.D. Miller, M. Fidler-Benaoudia, T.H. Keegan et al., Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin 70, 443–459 (2020). https://doi.org/10.3322/caac.21637

    Article  Google Scholar 

  10. Y. Ryu, S. Moon, Y. Oh, et al., Effect of coupled graphene oxide on the sensitivity of surface plasmon resonance detection. Appl. Opt. 53, 1419 (2014). https://doi.org/10.1364/ao.53.001419

  11. Y. Singh, M.K. Paswan, S.K. Raghuwanshi, Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 16, 1781–1790 (2021). https://doi.org/10.1007/s11468-020-01315-3

    Article  Google Scholar 

  12. A.K. Shakya, S. Singh, State of the art alliance of refractive index sensing and spectroscopy techniques for household oils analysis. Plasmonics (2023). https://doi.org/10.1007/s11468-023-01940-8

    Article  Google Scholar 

  13. C.S. Kumar, R. Anbazhagan, Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEU Int J Electron Commun 72, 40–45 (2017). https://doi.org/10.1016/j.aeue.2016.11.018

    Article  Google Scholar 

  14. P. Kumar, V. Kumar, J.S. Roy, Design of quad core photonic crystal fibers with flattened zero dispersion. AEU Int J Electron Commun 98, 265–272 (2019). https://doi.org/10.1016/j.aeue.2018.11.014

    Article  Google Scholar 

  15. S. Yadav, S. Singh, P. Lohia et al., Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2022-0143

  16. S. Luke, S.K. Sudheer, V.P.M. Pillai, Modeling and analysis of a highly birefringent chalcogenide photonic crystal fiber. Optik (Stuttg) 126, 3529–3532 (2015). https://doi.org/10.1016/j.ijleo.2015.08.190

    Article  ADS  Google Scholar 

  17. A.K. Shakya, S. Singh, Novel Merger of spectroscopy and refractive index sensing for modelling hyper sensitive hexa-slotted plasmonic sensor for transformer oil monitoring in near-infrared region. Opt Quantum Electron 55, 1–25 (2023). https://doi.org/10.1007/s11082-023-05016-z

    Article  Google Scholar 

  18. Z.H. Tawfiq, M.A. Fakhri, S.A. Adnan, Photonic crystal fibres pcf for different sensors in review. IOP Conf. Ser. Mater. Sci. Eng. 454: (2018). https://doi.org/10.1088/1757-899X/454/1/012173

  19. A.K. Shakya, S. Singh, Design of a novel refractive index BIOSENSOR for heavy metal detection from water samples based on fusion of spectroscopy and refractive index sensing. Optik (Stuttg) 270, 169892(2022). https://doi.org/10.1016/j.ijleo.2022.169892

  20. H. Han, H. Park, M. Cho, J. Kim, Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett 80, 2634–2636 (2002). https://doi.org/10.1063/1.1468897

    Article  ADS  Google Scholar 

  21. S. Singh, A.K. Sharma, P. Lohia et al., Design and modelling of high-performance surface plasmon resonance refractive index sensor using BaTiO3, MXene and nickel hybrid nanostructure. Plasmonics 17, 2049–2062(2022). https://doi.org/10.1007/s11468-022-01692-x

  22. J. Anthony, R. Leonhardt, A. Argyros, M.C.J. Large, Characterization of a microstructured Zeonex terahertz fiber. J Opt Soc Am B 28, 1013 (2011). https://doi.org/10.1364/josab.28.001013

    Article  ADS  Google Scholar 

  23. Y. Singh, S.K. Raghuwanshi, sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus. IEEE Sensors Lett 3, 18–21 (2019). https://doi.org/10.1109/LSENS.2019.2954052

    Article  Google Scholar 

  24. M.F.H. Arif, M.M. Hossain, N. Islam, S.M. Khaled, A nonlinear photonic crystal fiber for liquid sensing application with high birefringence and low confinement loss. Sens. Bio Sens. Res. 22, 100252 (2019). https://doi.org/10.1016/j.sbsr.2018.100252

  25. M.J.B.M. Leon, M.A. Kabir, Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence and low confinement loss. Sens. Bio Sens. Res. 28 100335(2020). https://doi.org/10.1016/j.sbsr.2020.100335

  26. M.M. Hasan, S. Sen, M.J. Rana et al., Heptagonal photonic crystal fiber based chemical sensor in THz regime. In: 2019 Jt 8th Int Conf Informatics, Electron Vision, ICIEV 2019 3rd Int Conf Imaging, Vis Pattern Recognition, icIVPR 2019 with Int Conf Act Behav Comput ABC, pp. 40–44(2019). https://doi.org/10.1109/ICIEV.2019.8858555

  27. I. Yakasai, P.E. Abas, S.F. Kaijage et al., Proposal for a quad-elliptical photonic crystal fiber for terahertz wave guidance and sensing chemical warfare liquids. Photonics 6 (2019). https://doi.org/10.3390/photonics6030078

  28. S. Asaduzzaman, M.F.H. Arif, K. Ahmed, P. Dhar, Highly sensitive simple structure circular photonic crystal fiber based chemical sensor. In: 2015 IEEE Int WIE Conf Electr Comput Eng WIECON-ECE 2015 1, 151–154 (2016). https://doi.org/10.1109/WIECON-ECE.2015.7443884

  29. M. De, T.K. Gangopadhyay, V.K. Singh, Prospects of photonic crystal fiber as physical sensor: an overview. Sensors (Switzerland) 19(2019). https://doi.org/10.3390/s19030464

  30. V.S. Chaudhary, D. Kumar, B.P. Pandey, S. Kumar, advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review. IEEE Sens J 23, 1012–1023 (2022). https://doi.org/10.1109/JSEN.2022.3222969

    Article  ADS  Google Scholar 

  31. C. Kalyoncu, A. Yasli, H. Ademgil, Machine learning methods for estimating bent photonic crystal fiber based SPR sensor properties. Heliyon 8, e11582(2022). https://doi.org/10.1016/j.heliyon.2022.e11582

  32. Y. Yi, Y. Ma, S. Wang et al., A new strain sensor based on depth-modulated long-period fiber grating. Infrared Phys. Technol. 111, 103520(2020). https://doi.org/10.1016/j.infrared.2020.103520

  33. H. Liu, H. Li, Q. Wang et al., Temperature-compensated magnetic field sensor based on surface plasmon resonance and directional resonance coupling in a D-shaped photonic crystal fiber. Optik (Stuttg) 158, 1402–1409 (2018). https://doi.org/10.1016/j.ijleo.2018.01.033

    Article  Google Scholar 

  34. V.S. Chaudhary, D. Kumar, R. Mishra, S. Sharma, Hybrid dual core photonic crystal fiber as hydrostatic pressure sensor. Optik (Stuttg) 210, 164497(2020). https://doi.org/10.1016/j.ijleo.2020.164497

  35. L. Zhao, H. Han, Y. Lian et al., Theoretical analysis of all-solid D-type photonic crystal fiber based plasmonic sensor for refractive index and temperature sensing. Opt Fiber Technol 50, 165–171 (2019). https://doi.org/10.1016/j.yofte.2019.03.013

    Article  ADS  Google Scholar 

  36. F. Zhang, S. Liu, Y. Wang et al., Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber. Appl. Phys. Exp. 11(2018), https://doi.org/10.7567/APEX.11.042501

  37. T. Wang, Y. Mao, B. Liu et al., compact fiber optic sensor for temperature and transverse load measurement based on the parallel vernier effect. IEEE Photon. J 14, 1–8 (2022). https://doi.org/10.1109/JPHOT.2022.3206313

    Article  Google Scholar 

  38. N. Ayyanar, G. Thavasi Raja, M. Sharma, D. Sriram Kumar, photonic crystal fiber-based refractive index sensor for early detection of cancer. IEEE Sens. J. 18, 7093–7099(2018). https://doi.org/10.1109/JSEN.2018.2854375

  39. A.M. Maidi, P.E. Abas, P.I. Petra et al., Theoretical considerations of photonic crystal fiber with all uniform-sized air holes for liquid sensing. Photonics 8(2021). https://doi.org/10.3390/photonics8070249

  40. Z. Liu, F. Sun, C. Wang, H. Tian, Side-coupled nanoscale photonic crystal structure with high-Q and high-stability for simultaneous refractive index and temperature sensing. J Mod Opt 66, 1339–1346 (2019). https://doi.org/10.1080/09500340.2019.1617444

    Article  ADS  Google Scholar 

  41. S Sen, M Abdullah-Al-Shafi, AS Sikder, et al., Zeonex based decagonal photonic crystal fiber (D-PCF) in the terahertz (THz) band for chemical sensing applications. Sens Bio Sens Res 31:100393(2021). https://doi.org/10.1016/j.sbsr.2020.100393

  42. M.S. Islam, J. Sultana, M. Faisal et al., A modified hexagonal photonic crystal fiber for terahertz applications. Opt Mater (Amst) 79, 336–339 (2018). https://doi.org/10.1016/j.optmat.2018.03.054

    Article  ADS  Google Scholar 

  43. C. Wu, B.-O. Guan, C. Lu, H.-Y. Tam, Salinity sensor based on polyimide-coated photonic crystal fiber. Opt Express 19, 20003 (2011). https://doi.org/10.1364/oe.19.020003

    Article  ADS  Google Scholar 

  44. B. Krishnamoorthi, B. Elizabeth Caroline, M. Michael, S. Thirumaran, A novel rhombic shaped photonic crystal bio-sensor for identifying disorders in the blood samples. Opt. Quant. Electron 55, 1–21(2023). https://doi.org/10.1007/s11082-023-04584-4

  45. R. Saha, M.M. Hossain, M.E. Rahaman, H.S. Mondal, Design and analysis of high birefringence and nonlinearity with small confinement loss photonic crystal fiber. Front Optoelectron 12, 165–173 (2019). https://doi.org/10.1007/s12200-018-0837-6

    Article  Google Scholar 

  46. M.A. Mollah, M. Yousufali, I.M. Ankan et al.,Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio Sens. Res. 29, 100344 (2020). https://doi.org/10.1016/j.sbsr.2020.100344

  47. X. Yang, C. Shi, D. Wheeler et al., High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J Opt Soc Am A 27, 977 (2010). https://doi.org/10.1364/josaa.27.000977

    Article  ADS  Google Scholar 

  48. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J Sensors (2012). https://doi.org/10.1155/2012/598178

    Article  Google Scholar 

  49. A. Ghazanfari, W. Li, M.C. Leu, G.E. Hilmas, A novel freeform extrusion fabrication process for producing solid ceramic components with uniform layered radiation drying. Addit Manuf 15, 102–112 (2017). https://doi.org/10.1016/j.addma.2017.04.001

    Article  Google Scholar 

  50. H. Ebendorff-Heidepriem, J. Schuppich, A. Dowler et al., 3D-printed extrusion dies: a versatile approach to optical material processing. Opt. Mater. Exp. 4 1494 (2014). https://doi.org/10.1364/ome.4.001494

  51. R.M. Almeida, S. Portal, Photonic band gap structures by sol-gel processing. Curr Opin Solid State Mater Sci 7, 151–157 (2003). https://doi.org/10.1016/S1359-0286(03)00045-7

    Article  ADS  Google Scholar 

  52. A.M. Cubillas, S. Unterkofler, T.G. Euser et al., Photonic crystal fibres for chemical sensing and photochemistry. Chem Soc Rev 42, 8629–8648 (2013). https://doi.org/10.1039/c3cs60128e

    Article  Google Scholar 

  53. V. Kaur, S. Singh, Extremely sensitive multiple sensing ring PCF sensor for lower indexed chemical detection. Sens Bio Sensing Res 15, 12–16 (2017). https://doi.org/10.1016/j.sbsr.2017.05.001

    Article  Google Scholar 

  54. T. Yang, C. Ding, R.W. Ziolkowski, Y.J. Guo, A terahertz (THz) single-polarization-single-mode (SPSM) photonic crystal fiber (PCF). Materials (Basel) 12(2019). https://doi.org/10.3390/ma12152442

  55. R.H. Jibon, A.A.M. Bulbul, M.E. Rahaman, Numerical investigation of the optical properties for multiple PCF structures in the THz regime. Sens. Bio Sens. Res. 32, 100405 (2021). https://doi.org/10.1016/j.sbsr.2021.100405

  56. M.S. Islam, J. Sultana, K. Ahmed et al., A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J 18, 575–582 (2018). https://doi.org/10.1109/JSEN.2017.2775642

    Article  ADS  Google Scholar 

  57. M.B. Hossain, E. Podder, A.A.M. Bulbul, H.S. Mondal, Bane chemicals detection through photonic crystal fiber in THz regime. Opt. Fiber Technol. 54, 102102 (2020). https://doi.org/10.1016/j.yofte.2019.102102

  58. K. Ahmed, F. Ahmed, S. Roy et al., Refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19, 3368–3375 (2019). https://doi.org/10.1109/JSEN.2019.2895166

    Article  ADS  Google Scholar 

  59. M.S. Islam, S. Rana, M.R. Islam et al., Porous core photonic crystal fibre for ultra-low material loss in THz regime. IET Commun 10, 2179–2183 (2016). https://doi.org/10.1049/iet-com.2016.0227

    Article  Google Scholar 

  60. B. Fischer, M. Hoffmann, H. Helm et al., Chemical recognition in terahertz time-domain spectroscopy and imaging. Semicond. Sci. Technol. 20(2005). https://doi.org/10.1088/0268-1242/20/7/015

Download references

Acknowledgements

The first author (Sapana Yadav) expresses gratitude to Madan Mohan Malaviya University of Technology Gorakhpur, India, for financial assistance. Dr. Sachin Singh, Institute of Advanced Materials, IAAM, Sweden and Dr. Yadvendra Singh, Boise University, USA have also expressed gratitude for their precious cooperation and assistance.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Conflict of interest

The corresponding author affirms there is no conflict of interest on representative of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Lohia, P. & Dwivedi, D.K. Quantitative analysis of highly efficient PCF-based sensor for early detection of breast cancer cells in THz regime. J Opt 53, 2642–2655 (2024). https://doi.org/10.1007/s12596-023-01404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01404-6

Keywords

Navigation