Log in

Eminently sensitive mono-rectangular photonic crystal fiber-based sensor for cancer cell detection in THz regime

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The present study reports a design procedure and numerical investigation of a photonic crystal fiber biosensor. The proposed sensor is consisting of irregular arranged rectangular holes. The core area has been arranged of a single rectangle for sensing the cancer cells and normal cells in the frequency range 1.0–2.5 THz. Zeonex has been utilized as a fiber material. The model has been organized and computationally investigated employing software based on the finite element method. The modeling of the designed sensor authenticates its capability in identifying cancer cells. An absorbing layer: perfectly matched layer has been used for calculating optical characteristics. It has been observed that the designed PCF sensor gives a high relative sensitivity of 81.38% for cancer cells and 65.83% for normal cells, respectively. Reduced confinement loss as 5.828 × 10−25 cm−1 has been achieved. Also, the effective area 2.549 × 10−8 µm2, birefringence 4.709 × 10−4, propagation constant  1.01961 × 10−24 and effective refractive index as 1.475 × 10−18 have been investigated. The present manufacturing technique is appropriate for the designing of proposed PCF sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. S. Suresh, Biomechanics and biophysics of cancer cells. Acta Biomater 3, 413–438 (2007). https://doi.org/10.1016/j.actbio.2007.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  2. M.J.B.M. Leon, M.A. Kabir, Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss. Sens Bio-Sensing Res 28, 100335 (2020). https://doi.org/10.1016/j.sbsr.2020.100335

    Article  Google Scholar 

  3. A. Habib, A.N.Z. Rashed, H.M. El-Hageen, A.M. Alatwi, Extremely sensitive photonic crystal fiber-based cancer cell detector in the terahertz regime. Plasmonics 16, 1297–1306 (2021). https://doi.org/10.1007/s11468-021-01409-6

    Article  CAS  Google Scholar 

  4. E.T.H. Fontham, A.M.D. Wolf, T.R. Church et al., Cervical cancer screening for individuals at average risk: 2020 guideline update from the American cancer society. CA Cancer J Clin 70, 321–346 (2020). https://doi.org/10.3322/caac.21628

    Article  PubMed  Google Scholar 

  5. G.E. Dressing, P. Thomas, Identification of membrane progestin receptors in human breast cancer cell lines and biopsies and their potential involvement in breast cancer. Steroids 72, 111–116 (2007). https://doi.org/10.1016/j.steroids.2006.10.006

    Article  CAS  PubMed  Google Scholar 

  6. K. Tajima, Y. Obata, H. Tamaki et al., Expression of cancer/testis (CT) antigens in lung cancer. Lung Cancer 42, 23–33 (2003). https://doi.org/10.1016/S0169-5002(03)00244-7

    Article  PubMed  Google Scholar 

  7. K. Glunde, Z.M. Bhujwalla, Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol 38, 26–41 (2011). https://doi.org/10.1053/j.seminoncol.2010.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. L.P. Shivangani, P.K. Singh et al., Design and modeling of reconfigurable surface plasmon resonance refractive index sensor using Al2O3, nickel, and heterostructure BlueP/WSe2 nanofilms. J Opt (2022). https://doi.org/10.1007/s12596-022-00973-2

    Article  Google Scholar 

  9. A. Umar, P. Lohia, S. Singh et al., Graphene and nickel nanomaterials based surface plasmon resonance (SPR) biosensor: a theoretical study. J Nanoelectron Optoelectron 17, 1215–1218 (2023). https://doi.org/10.1166/jno.2022.3320

    Article  CAS  Google Scholar 

  10. Bulbul A.A.M., Jibon R.H., Awal M.A., et al., Toxic Chemicals Detection using Photonic Crystal Fiber in THz Regime. 2020 11th Int Conf Comput Commun Netw Technol ICCCNT 2020 2–6 (2020). https://doi.org/10.1109/ICCCNT49239.2020.9225544

  11. S. Singh, P.K. Singh, A. Umar et al., 2D nanomaterial-based surface plasmon resonance sensors for biosensing applications. Micromachines 11, 1–28 (2020). https://doi.org/10.3390/mi11080779

    Article  Google Scholar 

  12. J. El Haddad, B. Bousquet, L. Canioni, P. Mounaix, Review in terahertz spectral analysis. TrAC - Trends Anal Chem 44, 98–105 (2013). https://doi.org/10.1016/j.trac.2012.11.009

    Article  CAS  Google Scholar 

  13. Rana S., Islam S., Sultana J., et al. A highly birefringent slotted-core THz fiber. Proc 9th Int Conf Electr Comput Eng ICECE 2016 226–229. (2017) https://doi.org/10.1109/ICECE.2016.7853897

  14. K. Ahmed, F. Ahmed, S. Roy et al., refractive index-based blood components sensing in terahertz spectrum. IEEE Sens J 19, 3368–3375 (2019). https://doi.org/10.1109/JSEN.2019.2895166

    Article  CAS  ADS  Google Scholar 

  15. S. Olyaee, A. Naraghi, V. Ahmadi, High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik (Stuttg) 125, 596–600 (2014). https://doi.org/10.1016/j.ijleo.2013.07.047

    Article  CAS  ADS  Google Scholar 

  16. M.S. Islam, K.M. Samaun Reza, M.R. Islam, Topas based high birefringent and low loss single mode hybrid-core porous fiber for broadband application. Indian J Pure Appl Phys 56, 399–404 (2018)

    Google Scholar 

  17. T. Zhao, S. Lou, X. Wang et al., Simultaneous measurement of curvature, strain and temperature using a twin-core photonic crystal fiber-based sensor. Sensors (Switzerland) (2018). https://doi.org/10.3390/s18072145

    Article  PubMed Central  Google Scholar 

  18. A. Umar, S. Singh, S. Yadav et al., Numerical study of surface plasmon resonance biosensor using aluminium oxide and bismuth telluride nanomaterials for skin cancer cell detection. J Nanoelectron Optoelectron 17, 1655–1658 (2023). https://doi.org/10.1166/jno.2022.3358

    Article  Google Scholar 

  19. M. Aliee, M.H. Mozaffari, H. Saghaei, Dispersion-flattened photonic quasicrystal optofluidic fiber for telecom C band operation. Photonics Nanostruct Fundam Appl (2020). https://doi.org/10.1016/j.photonics.2020.100797

    Article  Google Scholar 

  20. M.S. Islam, C.M.B. Cordeiro, J. Sultana et al., A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7, 79085–79094 (2019). https://doi.org/10.1109/ACCESS.2019.2922663

    Article  Google Scholar 

  21. M.R. Islam, M.F. Kabir, K.M.A. Talha, M.S. Arefin, Highly birefringent honeycomb cladding terahertz fiber for polarization-maintaining applications. Opt Eng 59, 1 (2020). https://doi.org/10.1117/1.oe.59.1.016113

    Article  CAS  Google Scholar 

  22. T. Yasui, Y. Namihira, M.A. Hossain et al., High numerical aperture square lattice structure photonic crystal fiber for optical coherence tomography. Int Conf Adv Technol Commun (2013). https://doi.org/10.1109/ATC.2013.6698113

    Article  Google Scholar 

  23. E. Coscelli, R. Dauliat, F. Poli et al., Analysis of the modal content into large-mode-area photonic crystal fibers under heat load. IEEE J Sel Top Quantum Electron 22, 323–330 (2016). https://doi.org/10.1109/JSTQE.2015.2479156

    Article  CAS  ADS  Google Scholar 

  24. M. Moshiur Rahman, F. Akter Mou, M. Imamul Hassan Bhuiyan, M. Rakibul Islam, Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime. Opt Fiber Technol 55, 102158 (2020). https://doi.org/10.1016/j.yofte.2020.102158

    Article  CAS  Google Scholar 

  25. S.M. Salimullah, M. Faisal, Ultra-wideband and coherent supercontinuum generation (near and mid-infrared) in dispersion flattened ZnGeP2 photonic crystal fiber. Alexandria Eng J 70, 289–300 (2023). https://doi.org/10.1016/j.aej.2023.03.002

    Article  Google Scholar 

  26. M.S. Islam, J. Sultana, M. Faisal et al., A modified hexagonal photonic crystal fiber for terahertz applications. Opt Mater (Amst) 79, 336–339 (2018). https://doi.org/10.1016/j.optmat.2018.03.054

    Article  CAS  ADS  Google Scholar 

  27. X. Kong, X. Li, X. Jiang, B. Tang, An ultra large negative dispersion regular octagonal PCF with liquid infiltration AOPC 2015. Adv Laser Technol Appl 9671, 96711G (2015). https://doi.org/10.1117/12.2200942

    Article  Google Scholar 

  28. M. Mayilamu, J.Q. Yao, Y. Lu, Y.P. Miao, Highly nonlinear and birefringent photonic crystal fiber at 1.55 μm. Guangxue **gmi Gongcheng/Optics Precis Eng 22, 588–596 (2014). https://doi.org/10.3788/OPE.20142203.0588

    Article  Google Scholar 

  29. J. Wu, S. Li, X. **g et al., Elliptical photonic crystal fiber polarization filter combined with surface plasmon resonance. IEEE Photonics Technol Lett 30, 1368–1371 (2018). https://doi.org/10.1109/LPT.2018.2845459

    Article  CAS  ADS  Google Scholar 

  30. V. Devika, M.S.M. Rajan, Hexagonal PCF of honeycomb lattice with high birefringence and high nonlinearity. Int J Mod Phys B 34, 1–10 (2020). https://doi.org/10.1142/S0217979220500940

    Article  Google Scholar 

  31. Hu D.J.J., Xu Z., Ertman S., et al. Two core photonic crystal fiber with hybrid guiding Mechanisms. 2017 Conf Lasers Electro-Optics Pacific Rim, CLEO-PR 2017 2017-Janua:1–3. (2017). https://doi.org/10.1109/CLEOPR.2017.8118922

  32. S. Uddin, D.K. Singh, A solid silica core based non-linear hybrid PCF with low confinement loss. Optik (Stuttg) 127, 10399–10411 (2016). https://doi.org/10.1016/j.ijleo.2016.08.043

    Article  CAS  ADS  Google Scholar 

  33. C. Markos, I. Kubat, O. Bang, Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Sci Rep (2014). https://doi.org/10.1038/srep06057

    Article  PubMed  PubMed Central  Google Scholar 

  34. M.S. Islam, J. Sultana, A. Dinovitser et al., Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications. Appl Opt 57, 666 (2018). https://doi.org/10.1364/ao.57.000666

    Article  CAS  PubMed  ADS  Google Scholar 

  35. M. Goto, A. Quema, H. Takahashi et al., Teflon photonic crystal fiber as Terahertz Waveguide. Japanese J Appl Physics Part 2 Lett. 43, 2–5 (2004). https://doi.org/10.1143/jjap.43.l317

    Article  Google Scholar 

  36. M. Islam, J. Rahman, M. Islam, Topas based low loss and dispersion flatten decagonal porous core photonic crystal fiber for terahertz communication. Int. J. Microw. Opt. Technol 14, 62 (2019)

    Google Scholar 

  37. M. Klimczak, B. Siwicki, A. Heidt, R. Buczyński, Coherent supercontinuum generation in soft glass photonic crystal fibers. Photonics Res 5, 710 (2017). https://doi.org/10.1364/prj.5.000710

    Article  CAS  Google Scholar 

  38. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J Sensors (2012). https://doi.org/10.1155/2012/598178

    Article  Google Scholar 

  39. S.H. Kassani, R. Khazaeinezhad, Y. Jung et al., Suspended ring-core photonic crystal fiber gas sensor with high sensitivity and fast response. IEEE Photonics J 7, 1–9 (2015). https://doi.org/10.1109/JPHOT.2015.2396121

    Article  CAS  Google Scholar 

  40. M.S. Islam, J. Sultana, A. Dinovitser et al., Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt Commun 426, 341–347 (2018). https://doi.org/10.1016/j.optcom.2018.05.030

    Article  CAS  ADS  Google Scholar 

  41. S. Singh, A.K. Sharma, P. Lohia et al., Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Nanomaterials 12, 107126 (2022). https://doi.org/10.1016/j.spmi.2021.107126

    Article  CAS  Google Scholar 

  42. A.M.F. Shivangani, Y. Al-Hadeethi et al., Numerical study to enhance the sensitivity of a surface plasmon resonance sensor with BlueP/WS2-Covered Al2 O3-Nickel Nanofilms. Nanomaterials (2022). https://doi.org/10.3390/nano12132205

    Article  PubMed  PubMed Central  Google Scholar 

  43. Islam M.S., Sultana J., Dinovitser A., et al. A novel Zeonex based photonic sensor for alcohol detection in beverages. 2nd IEEE Int Conf Telecommun Photonics, ICTP 2017 2017-Decem:114–118. (2018) https://doi.org/10.1109/ICTP.2017.8285905

  44. P. Sharan, S.M. Bharadwaj, F.D. Gudagunti, P. Deshmukh, Design and modelling of photonic sensor for cancer cell detection. 2014 Int Conf IMpact E-Technology US. IMPETUS 2014, 20–24 (2014). https://doi.org/10.1109/IMPETUS.2014.6775872

    Article  Google Scholar 

  45. Sharma P., Sharan P., Deshmukh P. A photonic crystal sensor for analysis and detection of cancer cells. 2015 Int Conf Pervasive Comput Adv Commun Technol Appl Soc ICPC 2015 (2015) https://doi.org/10.1109/PERVASIVE.2015.7087208

  46. N.R. Ramanujam, I.S. Amiri, S.A. Taya et al., Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst Technol 25, 189–196 (2019). https://doi.org/10.1007/s00542-018-3947-6

    Article  Google Scholar 

  47. V. Shirmohammadli, N. Manavizadeh, Numerical modeling of cell trajectory inside a dielectrophoresis microdevice designed for breast cancer cell screening. IEEE Sens J 18, 8215–8222 (2018). https://doi.org/10.1109/JSEN.2018.2865699

    Article  CAS  ADS  Google Scholar 

  48. M.A. Mollah, M. Yousufali, I.M. Ankan et al., Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens Bio-Sensing Res 29, 100344 (2020). https://doi.org/10.1016/j.sbsr.2020.100344

    Article  Google Scholar 

  49. M.A. Jabin, K. Ahmed, M.J. Rana et al., Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J (2019). https://doi.org/10.1109/JPHOT.2019.2924825

    Article  Google Scholar 

  50. M.A. Jabin, Y. Luo, G.D. Peng et al., Design and fabrication of amoeba faced photonic crystal fiber for biosensing application. Sensors Actuators, A Phys 313, 112204 (2020). https://doi.org/10.1016/j.sna.2020.112204

    Article  CAS  Google Scholar 

  51. M.S. Islam, J. Sultana, J. Atai et al., Ultra low-loss hybrid core porous fiber for broadband applications. Appl Opt 56, 1232 (2017). https://doi.org/10.1364/ao.56.001232

    Article  CAS  PubMed  ADS  Google Scholar 

  52. J.D. Shephard, W.N. MacPherson, R.R.J. Maier et al., Single-mode mid-IR guidance in a hollow-core photonic crystal fiber. Opt Express 13, 7139 (2005). https://doi.org/10.1364/opex.13.007139

    Article  CAS  PubMed  ADS  Google Scholar 

  53. R.H. Jibon, M.E. Rahaman, M.A. Alahe, Detection of primary chemical analytes in the THz regime with photonic crystal fiber. Sens Bio-Sensing Res 33, 100427 (2021). https://doi.org/10.1016/j.sbsr.2021.100427

    Article  Google Scholar 

  54. T. Photonic, C. Fiber, An Ultra-Wideband Single-Polarization-Single-Mode. 21–22 (2020)

  55. M.M.A. Eid, A.N.Z. Rashed, A.A.M. Bulbul, E. Podder, Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16, 717–727 (2021). https://doi.org/10.1007/s11468-020-01334-0

    Article  CAS  Google Scholar 

  56. S. Yadav, S. Singh, P. Lohia et al., Delineation of profoundly birefringent nonlinear photonic crystal fiber in terahertz frequency regime. J Opt Commun (2022). https://doi.org/10.1515/joc-2022-0143

    Article  Google Scholar 

  57. N.K.B. Suthar, Advances in Photonic crystals and Devices (2019)

  58. V.S. Chaudhary, D. Kumar, B.P. Pandey, S. Kumar, Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters- a review. IEEE Sens J 23, 1012–1023 (2022). https://doi.org/10.1109/JSEN.2022.3222969

    Article  ADS  Google Scholar 

  59. S. Singh, A.K. Sharma, P. Lohia et al., Design and modelling of high-performance surface plasmon resonance refractive index sensor using batio3, mxene and nickel hybrid nanostructure. Plasmonics 17, 2049–2062 (2022). https://doi.org/10.1007/s11468-022-01692-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is very grateful to Dr. Vijay Shanker Choudhary, Galgotias University and Dr. Sachin Singh, IAAM Sweden for their valuable support.

Funding

No external funding support is received for this work.

Author information

Authors and Affiliations

Authors

Contributions

SY: original manuscript writing, methodology, software analysis, conceptualization while DKD and PL: reviewing, editing and supervision.

Corresponding author

Correspondence to D. K. Dwivedi.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Ethics Approval

This is a theoretical analysis, so no ethical authorization is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Lohia, P. & Dwivedi, D.K. Eminently sensitive mono-rectangular photonic crystal fiber-based sensor for cancer cell detection in THz regime. J Opt 53, 528–537 (2024). https://doi.org/10.1007/s12596-023-01191-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-023-01191-0

Keywords

Navigation