Log in

Detection of Escherichia coli in Food Samples by Magnetosome-based Biosensor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The rising cases of food poisoning and traveler’s diarrhea through Escherichia coli infection are a global concern. Magnetosome is biogenic magnetic nanoparticles extracted from magnetotactic bacteria and magnetosome-based biosensors offer simple and rapid detection of microbial pathogens. The current study demonstrates the application of a magnetosome-antibody complex-based biosensor for the detection of antigenic O-polysaccharide and E. coli from contaminated food samples. The magnetosome (1, 2 mg/mL)-antibody (0.8–200 µg/mL) complex was initially coupled with lipopolysaccharide (5 µg/mL) through antibody-antigen interaction. The magnetosome (1, 2 mg/mL)-antibody (0.8–200 µg/mL)-lipopolysaccharide (5 µg/mL) complexes were collected via external magnet and confirmed through spectroscopy studies. The magnetosome (1, 2 mg/mL)-antibody (0.8–200 µg/mL) complexes were applied to different concentration of lipopolysaccharide (0.01–50 µg/mL). The concentrated magnetosome (2 mg/ mL)-antibody (1.6 µg/mL) complex and lipopolysaccharide (0.1 µg/mL) were established in ELISA. Further, the magnetosome-antibody complex was applied on a screen-printed carbon electrode and stabilized through an external magnet. The least concentration of lipopolysaccharide (0.5 µg/mL) was determined in impedance. Further, the magnetosome-based biosensor was applied to various contaminated food samples- milk, water, and pineapple juice and the extracted lipopolysaccharide were selectively detected. The biosensor did not display any cross-reactivity and therefore exhibits specificity. The active E. coli (101 CFU/mL) from milk and water samples were also rapidly detected within 30 min by the developed biosensor. Furthermore, the field emission scanning electron microscope images confirmed the efficient detection of E. coli from the food sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Desvaux, M., G. Dalmasso, R. Beyrouthy, N. Barnich, J. Delmas, and R. Bonnet (2020) Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 11: 2065.

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization, E. coli.https://www.who.int/news-room/fact-sheets/detail/e-coli.

  3. Gill, A. and G. Huszczynski (2016) Enumeration of Escherichia coli O157:H7 in outbreak-associated beef patties. J. Food Prot. 79: 1266–1268.

    Article  CAS  PubMed  Google Scholar 

  4. Wu, E. L., O. Engström, S. Jo, D. Stuhlsatz, M. S. Yeom, J. B. Klauda, G. Widmalm, and W. Im (2013) Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophys. J. 105: 1444–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ameer, M. A., A. Wasey, and P. Salen (2022) Escherichia coli (E coli 0157 H7). [Updated 2022 Jul 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507845/.

  6. Centers for Disease Control and Prevention, E. coli (Escherichia coli).https://www.cdc.gov/ecoli/index.html.

  7. Das, S., R. Jayaratne, and K. E. Barrett (2018) The role of ion transporters in the pathophysiology of infectious diarrhea. Cell. Mol. Gastroenterol. Hepatol. 6: 33–45.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Akarsu, E. S. and S. Mamuk (2007) Escherichia coli lipopoly-saccharides produce serotype-specific hypothermic response in biotelemetered rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292: R1846–R1850.

    Article  CAS  PubMed  Google Scholar 

  9. Dogan, M. D., H. Ataoglu, and E. S. Akarsu (2000) Effects of different serotypes of Escherichia coli lipopolysaccharides on body temperature in rats. Life Sci. 67: 2319–2329.

    Article  CAS  PubMed  Google Scholar 

  10. Al-Gallas, N., R. Ben Aissa R, T. A. Annabi, O. Bahri, and A. Boudabous (2002) Isolation and characterization of shiga toxin-producing Escherichia coli from meat and dairy products. Food Microbiol. 19: 389–398.

    Article  CAS  Google Scholar 

  11. Boukef, I., M. El Bour, N. Al Gallas, O. El Bahri, S. Mejri, R. Mraouna, R. Ben Aissa, A. Boudabous, P. Got, and M. Troussellier (2010) Survival of Escherichia coli strains in Mediterranean brackish water in the Bizerte lagoon in northern Tunisia. Water Environ. Res. 82: 2249–2257.

    Article  CAS  PubMed  Google Scholar 

  12. Guerrant, R. L., M. D. DeBoer, S. R. Moore, R. J. Scharf, and A. A. Lima (2013) The impoverished gut—a triple burden of diarrhoea, stunting and chronic disease. Nat. Rev. Gastroenterol. Hepatol. 10: 220–229.

    Article  PubMed  Google Scholar 

  13. Chowdhury, F., I. A. Khan, S. Patel, A. U. Siddiq, N. C. Saha, A. I. Khan, A. Saha, A. Cravioto, J. Clemens, F. Qadri, and M. Ali (2015) Diarrheal illness and healthcare seeking behavior among a population at high risk for diarrhea in Dhaka, Bangladesh. PLoS One 10: e0130105.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bourgeois, A. L., T. F. Wierzba, and R. I. Walker (2016) Status of vaccine research and development for enterotoxigenic Escherichia coli. Vaccine 34: 2880–2886.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, S. C., C. H. Lin, I. A. Aljuffali, and J. Y. Fang (2017) Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Arch. Microbiol. 199: 811–825.

    Article  CAS  PubMed  Google Scholar 

  16. Erridge, C., E. Bennett-Guerrero, and I. R. Poxton (2002) Structure and function of lipopolysaccharides. Microbes Infect. 4: 837–851.

    Article  CAS  PubMed  Google Scholar 

  17. Coats, S. R., C. T. Do, L. M. Karimi-Naser, P. H. Braham, and R. P. Darveau (2007) Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell. Microbiol. 9: 1191–1202.

    Article  CAS  PubMed  Google Scholar 

  18. Bertani, B. and N. Ruiz (2018) Function and biogenesis of lipopolysaccharides. EcoSal Plus 8: https://doi.org/10.1128/ecosalplus.ESP-0001-2018.

  19. Bergstrand, A., C. Svanberg, M. Langton, and M. Nydén (2006) Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces 53: 9–14.

    Article  CAS  PubMed  Google Scholar 

  20. Perdomo, R. and V. Montero (2006) Purification of E. coli 055:B5 lipopolysaccharides by size exclusion chromatography. Biotecnol. Apl. 23: 124–129.

    Google Scholar 

  21. Ivnitski, D., I. Abdel-Hamid, P. Atanasov, E. Wilkins, and S. Stricker (2000) Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis 12: 317–325.

    Article  CAS  Google Scholar 

  22. Wu, W., S. Zhao, Y. Mao, Z. Fang, X. Lu, and L. Zeng (2015) A sensitive lateral flow biosensor for Escherichia coli O157:H7 detection based on aptamer mediated strand displacement amplification. Anal. Chim. Acta 861: 62–68.

    Article  CAS  PubMed  Google Scholar 

  23. Lazcka, O., F. J. Del Campo, and F. X. Muñoz (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205–1217.

    Article  CAS  PubMed  Google Scholar 

  24. Borghol, N., L. Mora, T. Jouenne, N. Jaffézic-Renault, N. Sakly, A. C. Duncan, Y. Chevalier, P. Lejeune, and A. Othmane (2010) Monitoring of E. coli immobilization on modified gold electrode: a new bacteria-based glucose sensor. Biotechnol. Bioprocess Eng. 15: 220–228.

    Article  CAS  Google Scholar 

  25. Mehrotra, P. (2016) Biosensors and their applications — a review. J. Oral Biol. Craniofac. Res. 6: 153–159.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee, D., J. Hwang, Y. Seo, A. A. Gilad, and J. Choi (2018) Optical immunosensors for the efficient detection of target biomolecules. Biotechnol. Bioprocess Eng. 23: 123–133.

    Article  CAS  Google Scholar 

  27. Cho, C. H., T. J. Park, and J. P. Park (2022) Affinity peptide-based electrochemical biosensor for the highly sensitive detection of bovine rotavirus. Biotechnol. Bioprocess Eng. 27: 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pérez-López, B. and A. Merkoçi (2011) Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 22: 625–639.

    Article  Google Scholar 

  29. Sharma, R., K. V. Ragavan, M. S. Thakur, and K. S. M. S. Raghavarao (2015) Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 74: 612–627.

    Article  CAS  PubMed  Google Scholar 

  30. Lim, S. H., Y. C. Ryu, and B. H. Hwang (2021) Aptamer-immobilized gold nanoparticles enable facile and on-site detection of Staphylococcus aureus. Biotechnol. Bioprocess Eng. 26: 107–113.

    Article  CAS  Google Scholar 

  31. Ding, L., A. M. Bond, J. Zhai, and J. Zhang (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal. Chim. Acta 797: 1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Usov, N. A. and E. M. Gubanova (2020) Application of magnetosomes in magnetic hyperthermia. Nanomaterials (Basel) 10: 1320.

    Article  CAS  PubMed  Google Scholar 

  33. Nudelman, H., Y. Z. Lee, Y. L. Hung, S. Kolusheva, A. Upcher, Y. C. Chen, J. Y. Chen, S. C. Sue, and R. Zarivach (2018) Understanding the biomineralization role of magnetite-interacting components (MICs) from magnetotactic bacteria. Front. Microbiol. 9: 2480.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wacker, R., B. Ceyhan, P. Alhorn, D. Schueler, C. Lang, and C. M. Niemeyer (2007) Magneto immuno-PCR: a novel immunoassay based on biogenic magnetosome nanoparticles. Biochem. Biophys. Res. Commun. 357: 391–396.

    Article  CAS  PubMed  Google Scholar 

  35. Revathy, T., M. A. Jayasri, and K. Suthindhiran (2016) Antimicrobial magnetosomes for topical antimicrobial therapy. pp. 67–101. In: A. M. Grumezescu (ed.). Nanobiomaterials in Antimicrobial Therapy: Applications of Nanobiomaterials. William Andrew Publishing, Kidlington, UK.

    Chapter  Google Scholar 

  36. Uebe, R. and D. Schüler (2016) Magnetosome biogenesis in magnetotactic bacteria. Nat. Rev. Microbiol. 14: 621–637.

    Article  CAS  PubMed  Google Scholar 

  37. Jacob, J. J. and K. Suthindhiran (2020) Immobilisation of lipase enzyme onto bacterial magnetosomes for stain removal. Biotechnol. Rep. (Amst.) 25: e00422.

    Article  PubMed  Google Scholar 

  38. Jacob, J. J. and K. Suthindhiran (2021) Efficiency of immobilized enzymes on bacterial magnetosomes. Appl. Biochem. Microbiol. 57: 603–610.

    Article  CAS  Google Scholar 

  39. Raguraman, V., M. A. Jayasri, and K. Suthindhiran (2020) Magnetosome mediated oral Insulin delivery and its possible use in diabetes management. J. Mater. Sci. Mater. Med. 31: 75.

    Article  CAS  PubMed  Google Scholar 

  40. Raguraman, V. and K. Suthindhiran (2020) Comparative studies on functionalization of bacterial magnetic nanoparticles for drug delivery. J. Clust. Sci. 31: 1275–1284.

    Article  CAS  Google Scholar 

  41. Sannigrahi, S., S. K. Arumugasamy, J. Mathiyarasu, and K. Suthindhiran (2020) Magnetosome-anti-Salmonella antibody complex based biosensor for the detection of Salmonella typhimurium. Mater. Sci. Eng. C Mater. Biol. Appl. 114: 111071.

    Article  CAS  PubMed  Google Scholar 

  42. Varshney, M., L. Yang, X. L. Su, and Y. Li (2005) Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Prot. 68: 1804–1811.

    Article  CAS  PubMed  Google Scholar 

  43. Alphandéry, E. (2014) Applications of magnetosomes synthesized by magnetotactic bacteria in medicine. Front. Bioeng. Biotechnol. 2: 5.

    PubMed  PubMed Central  Google Scholar 

  44. Fung, F., H. S. Wang, and S. Menon (2018) Food safety in the 21st century. Biomed. J. 41: 88–95.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, X., P. Geng, H. Liu, Y. Teng, Y. Liu, Q. Wang, W. Zhang, L. **, and L. Jiang (2009) Development of an electrochemical immunoassay for rapid detection of E. coli using anodic strip** voltammetry based on Cu@Au nanoparticles as antibody labels. Biosens. Bioelectron. 24: 2155–2159.

    Article  CAS  PubMed  Google Scholar 

  46. Ngo, V. K. T., H. P. U. Nguyen, T. P. Huynh, N. N. P. Tran, Q. V. Lam, and T. D. Huynh (2015) Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol. 6: 035015.

    Article  Google Scholar 

  47. Wang, Y. and E. C. Alocilja (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J. Biol. Eng. 9: 16.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zheng, L., G. Cai, S. Wang, M. Liao, Y. Li, and J. Lin (2019) A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron. 124–125: 143–149.

    Article  PubMed  Google Scholar 

  49. Das, M., K. H. Shim, S. S. A. An, and D. K. Yi (2011) Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 3: 193–205.

    Article  Google Scholar 

  50. Narayanan, K. B. and N. Sakthivel (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater. Lett. 62: 4588–4590.

    Article  CAS  Google Scholar 

  51. Jazayeri, M. H., H. Amani, A. A. Pourfatollah, H. Pazoki-Toroudi, and B. Sedighimoghaddam (2016) Various methods of gold nanoparticles (GNPs) conjugation to antibodies. Sens. Biosensing Res. 9: 17–22.

    Article  Google Scholar 

  52. **ng, K. Y., J. Peng, D. F. Liu, L. M. Hu, C. Wang, G. Q. Li, G. G. Zhang, Z. Huang, S. Cheng, F. F. Zhu, N. M. Liu, and W. H. Lai (2018) Novel immunochromatographic assay based on Eu (III)-doped polystyrene nanoparticle-linker-monoclonal antibody for sensitive detection of Escherichia coli O157:H7. Anal. Chim. Acta 998: 52–59.

    Article  CAS  PubMed  Google Scholar 

  53. Yan, L., H. Da, S. Zhang, V. M. López, and W. Wang (2017) Bacterial magnetosome and its potential application. Microbiol. Res. 203: 19–28.

    Article  CAS  PubMed  Google Scholar 

  54. Li, X., H. Xu, Z.-S. Chen, and G. Chen (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J. Nanomater. 2011: 270974.

    Article  Google Scholar 

  55. Di Padova, F. E., H. Brade, G. R. Barclay, I. R. Poxton, E. Liehl, E. Schuetze, H. P. Kocher, G. Ramsay, M. H. Schreier, and D. B. McClelland (1993) A broadly cross-protective monoclonal antibody binding to Escherichia coli and Salmonella lipopolysaccharides. Infect. Immun. 61: 3863–3872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernández, E., L. Vidal, A. Costa-García, and A. Canals (2016) Mercury determination in urine samples by gold nanostructured screen-printed carbon electrodes after vortex-assisted ionic liquid dispersive liquid-liquid microextraction. Anal. Chim. Acta 915: 49–55.

    Article  PubMed  Google Scholar 

  57. Đurđić, S., V. Vukojević, M. Ognjanović, L. Švorc, J. Mutić, and D. M. Stanković (2019) Nanomolar quantification of polydatin at boron doped diamond electrode. Application in dietary supplements. Int. J. Electrochem. Sci. 14: 5086–5095.

    Article  Google Scholar 

  58. Knežević, S., M. Ognjanović, N. Nedić, J. F. Mariano, Z. Milanović, B. Petković, B. Antić, S. V. Djurić, and D. Stanković (2020) A single drop histamine sensor based on AuNPs/MnO2 modified screen-printed electrode. Microchem. J. 155: 104778.

    Article  Google Scholar 

  59. Medina-Plaza, C., C. García-Hernández, J. A. de Saja, J. A. Fernández-Escudero, E. Barajas, G. Medrano, C. García-Cabezón, F. Martin-Pedrosa, and M. L. Rodriguez-Mendez (2015) The advantages of disposable screen-printed biosensors in a bioelectronic tongue for the analysis of grapes. Lebensm. Wiss. Technol. 62: 940–947.

    Article  CAS  Google Scholar 

  60. Wu, L., B. Gao, F. Zhang, X. Sun, Y. Zhang, and Z. Li (2013) A novel electrochemical immunosensor based on magnetosomes for detection of staphylococcal enterotoxin B in milk. Talanta 106: 360–366.

    Article  CAS  PubMed  Google Scholar 

  61. Yamada, K., C. T. Kim, J. H. Kim, J. H. Chung, H. G. Lee, and S. Jun (2014) Single walled carbon nanotube-based junction biosensor for detection of Escherichia coli. PLoS One 9: e105767.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Singh, R., M. D. Mukherjee, G. Sumana, R. K. Gupta, S. Sood, and B. D. Malhotra (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sens. Actuators B Chem. 197: 385–404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been funded by Grant-in-Aid from DBT-No. BT/PR10570/PFN/20/839/2013) and is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

SS prepared the manuscript and carried out all the experiments. SKA carried out the electrochemical experiments. JM conceptualized and supervised the electrochemical experiments. KS conceptualized, supervised, provided resources, funding acquisition for the study. All authors have reviewed the manuscript.

Corresponding author

Correspondence to K. Suthindhiran.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannigrahi, S., Kumar A, S., Mathiyarasu, J. et al. Detection of Escherichia coli in Food Samples by Magnetosome-based Biosensor. Biotechnol Bioproc E 28, 152–161 (2023). https://doi.org/10.1007/s12257-022-0235-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0235-1

Keywords

Navigation