Log in

Ultrasonic wave propagation in thermoelectric \(\hbox {ZrX}_{2 }\,(\hbox {X} = \hbox {S}, \hbox {Se})\) compounds

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, we have calculated temperature-dependent second- and third-order elastic constants (SOECs and TOECs) of thermoelectric zirconium disulphide (\(\hbox {ZrS}_{2})\) and zirconium diselenide (\(\hbox {ZrSe}_{2})\) using a simple interaction potential model. SOECs have been used for the calculation of ultrasonic velocity along different orientations of propagation. Thermal relaxation time and ultrasonic attenuation have been determined with the help of SOECs and thermal conductivity. Temperature-dependent specific heat, thermal energy density, elastic coupling constants and Grüneisen parameters are also calculated using SOECs and other parameters. The dominating cause behind ultrasonic attenuation, in the temperature range of 300–900 K, is the interaction of acoustical phonon and lattice phonon. In the present study, we observed that the thermal conductivity and energy density play significant roles in ultrasonic attenuation. Ultrasonic velocity and attenuation are correlated with other thermophysical properties extracting important information about the quality and nature of the materials which are useful for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P K Dhawan, M Wan, S K Verma, D K Pandey and R R Yadav, J. Appl. Phys. 117, 074307 (2015)

    Article  ADS  Google Scholar 

  2. Q Zhao, Y Guo, K Si, Z Ren, J Bai and X Xu, Phys. Status Solidi B 254, 1700033 (2017)

    Article  ADS  Google Scholar 

  3. X Wang, L Huang, X W Jiang, Y Li, Z Wei and J Li, J. Mater. Chem. C 4, 3143 (2016)

    Article  Google Scholar 

  4. Y Ōnuki, S Yamanaka, R Inada, M Kido and S Tanuma, Synth. Met. 5, 245 (1983)

    Article  Google Scholar 

  5. G Yumnam, T Pandey and A K Singh, J. Chem. Phys. 143, 234704 (2015)

    Article  ADS  Google Scholar 

  6. G Ding, G Y Gao, Z Huang, W Zhang and K Yao, Nanotechnol. 27, 375703 (2016)

    Article  Google Scholar 

  7. S M Valero, V G López, A Cantarero and M Galbiati, Appl. Sci. 6, 264 (2016)

    Article  Google Scholar 

  8. P K Yadawa, D Singh, D K Pandey, G Mishra and R R Yadav, Adv. Mater. Phys. Chem. 1, 14 (2011)

    Article  Google Scholar 

  9. D Singh, D K Pandey, P K Yadawa and A K Yadav, Cryogenics 49, 12 (2009)

    Article  ADS  Google Scholar 

  10. D Singh, P K Yadawa and S K Sahu, Cryogenics 50, 476 (2010)

    Article  ADS  Google Scholar 

  11. R R Yadav and D Singh, Intermetallics 9, 189 (2001)

    Article  Google Scholar 

  12. K Brugger, Phys. Rev. A 133, 1611 (1964)

    Article  ADS  Google Scholar 

  13. S K Kor and R R Yadav and Kailash, J. Phys. Soc. Jpn. 55, 207 (1986)

    Article  ADS  Google Scholar 

  14. S Mori and Y Hiki, J. Phys. Soc. Jpn. 45, 1449 (1978)

    Article  ADS  Google Scholar 

  15. P B Ghate, Phys. Rev. A 139, 1666 (1965)

    Article  ADS  Google Scholar 

  16. J Philip and M A Breazeale, J. Appl. Phys. 54, 752 (1983)

    Article  ADS  Google Scholar 

  17. S K Verma, R R Yadav, A K Yadav and B Joshi, Mater. Lett. 64, 1677 (2010)

    Article  Google Scholar 

  18. D K Pandey, D Singh and R R Yadav, Appl. Acoust. 68, 766 (2007)

    Article  Google Scholar 

  19. P K Yadawa, Pramana – J. Phys. 76, 613 (2011)

    Article  ADS  Google Scholar 

  20. C P Yadav and D K Pandey, Pramana – J. Phys. 92: 1 (2019)

    Article  ADS  Google Scholar 

  21. D K Pandey and R R Yadav, Appl. Acoust. 70, 412 (2009)

    Article  Google Scholar 

  22. D K Pandey, P K Yadawa and R R Yadav, Mater. Lett. 61, 5194 (2007)

    Article  Google Scholar 

  23. P K Dhawan, S Upadhyaya, S K Verma, M Wan, R R Yadav and B Joshi, Mater. Lett. 114, 15 (2014)

    Article  Google Scholar 

  24. W P Mason, J. Acoust. Soc. Am. 40, 852 (1966)

    Article  ADS  Google Scholar 

  25. K Brugger and T C Fritz, Phys. Rev. 157, 524 (1967)

    Article  ADS  Google Scholar 

  26. M Nandanpawar and S Rajagopalan, J. Acoust. Soc. Am. 71, 1469 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author (S P Singh) is thankful to the UGC, New Delhi, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Kumar Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Singh, G., Verma, A.K. et al. Ultrasonic wave propagation in thermoelectric \(\hbox {ZrX}_{2 }\,(\hbox {X} = \hbox {S}, \hbox {Se})\) compounds. Pramana - J Phys 93, 83 (2019). https://doi.org/10.1007/s12043-019-1846-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1846-8

Keywords

PACS Nos

Navigation