Log in

Shear Piezoelectric and Dielectric Properties of \({\hbox {LiNbO}}_{3}\), PMN-PT and PZT-5A at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have measured the low-temperature shear piezoelectric and dielectric constants of single-crystal lithium niobate (\(\hbox {LiNbO}_{3}\)) and lead magnesium niobate–lead titanate (PMN-PT), and of ceramic lead zirconium titanate (PZT-5A) transducers between room temperature and 78 mK. The piezoelectric and dielectric coefficients \(d_{15}\) and \(K^{\sigma }_{15}\) all decrease with temperature, although the total change in \(d_{15}\) is only about 7% for \(\hbox {LiNbO}_3\). The values of \(d_{15}\) for PZT-5A and PMN-PT are much larger at room temperature but decrease much more rapidly, by factors of 4 for PZT-5A and 10 for PMN-PT. For \(\hbox {LiNbO}_3\), \(d_{15}\) is constant below 50 K, but in both PZT-5A and PMN-PT \(d_{15}\) continues to decrease nearly linearly to the lowest temperatures. The behavior of the dielectric constant of each material mirrors that of \(d_{15}\), reflecting their common ferroelectric origins. The piezoelectric voltage constants \(g_{15}\) are similar in the three materials and are only weakly temperature dependent. For actuator applications where large displacements are needed, PMN-PT and PZT-5A have much larger \(d_{15}\) values than \(\hbox {LiNbO}_3\), but this advantage essentially disappears at low temperatures and \(\hbox {LiNbO}_3\) is a better choice in many applications. For sensor applications where \(g_{15}\) determines a transducer’s output voltage, the three materials have similar sensitivity for high-frequency applications like ultrasonics. At low frequencies, however, they are less sensitive as voltage sensors and the use of charge or current amplifiers is preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.G. Loewy, Recent developments in smart structures with aeronautical applications. Smart Mater. Struct. 6, R11–R42 (1997)

    Article  ADS  Google Scholar 

  2. Q. Zhou, K.H. Lam, H. Zheng, W. Qiu, K.K. Shung, Piezoelectric single crystal ultrasonic transducers for biomedical applications. Prog. Mater. Sci. 66, 87–111 (2014)

    Article  Google Scholar 

  3. J. Day, J. Beamish, Low-temperature shear modulus changes in solid \({}^{4}\text{ He }\) and connection to supersolidity. Nature 450, 853–856 (2007)

    Article  ADS  Google Scholar 

  4. A. Haziot, X. Rojas, A.D. Fefferman, J.R. Beamish, S. Balibar, Giant plasticity of a quantum crystal. Phys. Rev. Lett. 110, 035301 (2013)

    Article  ADS  Google Scholar 

  5. D.Y. Kim, H. Choi, W. Choi, S. Kwon, E. Kim, H.C. Kim, Unaffected nonclassical response of solid \({}^4\text{ He }\) under elastic modulus variation. Phys. Rev. B 83, 052503 (2011)

    Article  ADS  Google Scholar 

  6. S.A. Elrod, A.L. de Lozanne, C.F. Quate, Low-temperature vacuum tunneling microscopy. Appl. Phys. Lett. 45(11), 1240–1242 (1984)

    Article  ADS  Google Scholar 

  7. B. Yurke, P.G. Kaminsky, D.M. Eigler, Cryogenic piezoelectric displacement tester. Cryogenics 26(7), 435–436 (1986)

    Article  ADS  Google Scholar 

  8. F. Wang, W. Shi, S. Wing Or, X. Zhao, H. Luo, Cryogenic transverse and shear mode properties of (1–x)Pb(\({Mg}_{1/3}\) \(Nb_{2/3}\)) \( {O}_{3} \)-\( {xPbTiO}_{3}\) single crystal with the optimal crystallographic direction. Mater. Chem. Phys. 125(3), 718–722 (2011)

    Article  Google Scholar 

  9. M.W. Hooker, Properties of PZT-based piezoelectric ceramics between-150 and 250 C, NASA Technical Reports (1998)

  10. G. Gautschi, Piezoelectric Sensorics (Springer, Berlin, 2002), p. 41

    Book  Google Scholar 

  11. R.G. Sabat, B.K. Mukherjee, W. Ren, G. Yang, Temperature dependence of the complete material cofficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics. J. Appl. Phys. 101(6), 064111 (2007)

    Article  ADS  Google Scholar 

  12. X.L. Zhang, Z.X. Chen, L.E. Cross, W.A. Schulze, Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2 to 300 K. J. Mater. Sci. 18(4), 968–972 (1983)

    Article  ADS  Google Scholar 

  13. R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)

    Article  ADS  Google Scholar 

  14. T. Yamada, N. Niizeki, H. Toyoda, Piezoelectric and elastic properties of lithium niobate single crystals. Jpn. J. Appl. Phys. 6(2), 151 (1967)

    Article  ADS  Google Scholar 

  15. R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)

    Article  ADS  Google Scholar 

  16. K. Nassau, H.J. Levinstein, G.M. Lioacono, Ferroelectric lithium niobate: 2. Preparation of single domain crystals. J. Phys. Chem. Solids 27, 989–996 (1966)

    Article  ADS  Google Scholar 

  17. M.C. Wengler, M. Muller, E. Soergel, K. Buse, Poling dynamics of lithium niobate crystals. Appl. Phys. B 76, 393–396 (2003)

    Article  ADS  Google Scholar 

  18. F. Martin, H.J.M. ter Brake, L. Lebrun, S. Zhang, T. Shrout, Dielectric and piezoelectric activities in (1–x)Pb(\(\text{ Mg }_{1/3}\) \(\text{ Nb }_{2/3}\)) \(\text{ O }_{3} \)-\(\text{ xPbTiO }_{3}\) single crystals from 5 K to 300 K. J. Appl. Phys. 111(10), 104108 (2012)

    Article  ADS  Google Scholar 

  19. S. Bukhari, M. Islam, A. Haziot, J. Beamish, Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures. J. Phys. Conf. Ser. 568, 032004 (2014)

    Article  Google Scholar 

  20. 41\( ^{\circ } \) X-cut lithium niobate shear transducers, \(10.00\times 10.00\times 0.25\) mm with chrome/gold electrodes, supplied by Boston Piezo-Optics, Inc. http://www.bostonpiezooptics.com/. Accessed 20 Nov 2018

  21. TRS X2A single crystal lead magnesium niobate-lead titanate (PMN-PT) shear plates, \(10.00\times 10.00\times 1.00\,\text{ mm }\) with chrome/gold electrodes, supplied by TRS Technologies, Inc. http://www.trstechnologies.com/. Accessed 20 Nov 2018

  22. PZT-5A ceramic shear transducers, \( 12.77\times 9.58\times 1.78\,\text{ mm }\) with chrome/gold electrodes, supplied by Boston Piezo-Optics, Inc

  23. Andeen-Hagerling 2550A 1 kHz AC capacitance bridge. http://www.andeen-hagerling.com/. Accessed 20 Nov 2018

  24. A.W. Warner, M. Onoe, G.A. Coquin, Determination of elastic and piezoelectric constants for crystals in class (3 m). J. Acoust. Soc. Am. 42(6), 1223–1231 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Beamish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.S., Beamish, J. Shear Piezoelectric and Dielectric Properties of \({\hbox {LiNbO}}_{3}\), PMN-PT and PZT-5A at Low Temperatures. J Low Temp Phys 194, 285–301 (2019). https://doi.org/10.1007/s10909-018-2097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2097-7

Keywords

Navigation