Log in

Phonon engineering significantly reducing thermal conductivity of thermoelectric materials: a review

  • MINI REVIEW
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lattice thermal conductivity, \(\kappa_{{\text{L}}}\), is a fundamental parameter for evaluating the performance of thermoelectric materials. However, the predicted value of κL based on the Debye dispersion model is often overestimated compared with the experimentally determined value. Many researchers have attempted to modify the theoretical model and have sought more reliable results. In this review, the recent progress in the study of phonon dispersion models is summarized and we propose that the lattice thermal conductivity can be most accurately determined by using the modified sinusoidal phonon dispersion model. Moreover, experimental methods that have the potential to reduce a thermoelectric material’s \(\kappa_{{\text{L}}}\) are reviewed, for example, methods that generate standing waves or anharmonic lattice vibrations. A high concentration of standing waves and anharmonic lattice vibrations can effectively suppress excessive \(\kappa_{{\text{L}}}\). Finally, this review presents the challenges of sinusoidal phonon dispersion when applied to real materials, which are often complicated and therefore time-consuming, especially when dealing with material defects.

Graphical abstract

摘要

晶格导热系数 (\(\kappa_{{\text{L}}}\)), 是评估热电材料性能的一个基本参数。然而,与实验确定的数值相比,基于德拜扩散模型的预测值往往被高估。许多研究人员试图修改该理论模型, 并寻求更可靠的结果。在这篇综述中,我们总结了声子色散模型研究的最新进展,并提出通过使用修**的**弦声子色散模型可以最准确地确定晶格热导率。此外,本文回顾了有可能降低热电材料 \(\kappa_{{\text{L}}}\) 的实验方法, 例如, 产生驻波或非谐波晶格振动的方法。高浓度的驻波和非谐波晶格振动可以有效地抑制过度的 \(\kappa_{{\text{L}}}\)。最后,本综述介绍了**弦声子色散在应用于实际材料时面临的挑战,这些材料往往很复杂, 因此很费时间,特别是在处理材料缺陷时。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tian BZ, Jiang XP, Chen J, Gao H, Wang ZG, Tang J, Zhou DL, Yang L, Chen ZG. Low lattice thermal conductivity and enhanced thermoelectric performance of SnTe via chemical electroless plating of Ag. Rare Met. 2022;41(1):86. https://doi.org/10.1007/s12598-021-01805-1.

    Article  Google Scholar 

  2. Yan Q, Kanatzidis MG. High-performance thermoelectrics and challenges for practical devices. Nat Mater. 2022;21(5):503. https://doi.org/10.1038/s41563-021-01109-w.

    Article  CAS  Google Scholar 

  3. Mao J, Liu Z, Zhou J, Zhu H, Zhang Q, Chen G, Ren Z. Advances in thermoelectrics. Adv Phys. 2018;67(2):69. https://doi.org/10.1080/00018732.2018.1551715.

    Article  Google Scholar 

  4. Alex Z, Smiadak DM, Blackburn JL, Ferguson AJ, Chabinyc ML, Olivier D, Wang J, Kirill K, Joshua M, Schelhas LT. A practical field guide to thermoelectrics: fundamentals, synthesis, and characterization. Appl Phys Rev. 2018;5(2):021303. https://doi.org/10.1063/1.5021094.

    Article  CAS  Google Scholar 

  5. Eivari HA, Sohbatzadeh Z, Mele P, Assadi MHN. Low thermal conductivity: fundamentals and theoretical aspects in thermoelectric applications. Mater Today Energy. 2021;21:100744. https://doi.org/10.1016/j.mtener.2021.100744.

    Article  Google Scholar 

  6. Han Z, Li JW, Jiang F, **a J, Zhang BP, Li JF, Liu W. Room-temperature thermoelectric materials: challenges and a new paradigm. J Materiomics. 2021;8(2):427. https://doi.org/10.1016/j.jmat.2021.07.004.

    Article  Google Scholar 

  7. Qian X, Zhou J, Chen G. Phonon-engineered extreme thermal conductivity materials. Nat Mater. 2021;20(9):1188. https://doi.org/10.1038/s41563-021-00918-3.

    Article  CAS  Google Scholar 

  8. Nomura M, Anufriev R, Zhang Z, Maire J, Guo Y, Yanagisawa R, Volz S. Review of thermal transport in phononic crystals. Mater Today Phys. 2022;22:100613. https://doi.org/10.1016/j.mtphys.2022.100613.

    Article  CAS  Google Scholar 

  9. Zhu Y, Wei B, Liu J, Koocher NZ, Li Y, Hu L, He W, Deng G, Xu W, Wang X, Rondinelli JM, Zhao LD, Snyder GJ, Hong J. Physical insights on the low lattice thermal conductivity of AgInSe2. Mater Today Phys. 2021;19:100428. https://doi.org/10.1016/j.mtphys.2021.100428.

    Article  CAS  Google Scholar 

  10. Dangić Đ, Hellman O, Fahy S, Savić I. The origin of the lattice thermal conductivity enhancement at the ferroelectric phase transition in GeTe. NPJ Comput Mater. 2021;7(1):57. https://doi.org/10.1038/s41524-021-00523-7.

    Article  CAS  Google Scholar 

  11. Yang J, Cai J, Wang R, Guo Z, Tan X, Liu G, Ge Z, Jiang J. Entropy engineering realized ultralow thermal conductivity and high seebeck coefficient in lead-free SnTe. ACS Appl Energy Mater. 2021;4(11):12738. https://doi.org/10.1021/acsaem.1c02448.

    Article  CAS  Google Scholar 

  12. Ye Z, Peng W, Wang F, Balodhi A, Basnet R, Hu J, Zevalkink A, Wang J. Quasi-layered crystal structure coupled with point defects leading to ultralow lattice thermal conductivity in n-type Cu2.83Bi10Se16. ACS Appl Energy Mater. 2021;4(10):11325. https://doi.org/10.1021/acsaem.1c02154.

    Article  CAS  Google Scholar 

  13. Lee KH, Kim YM, Park CO, Shin WH, Kim SW, Kim HS, Kim SI. Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi, Sb)2Te3 alloys. Mater Today Energy. 2021;21:100795. https://doi.org/10.1016/j.mtener.2021.100795.

    Article  CAS  Google Scholar 

  14. Biswas K, He J, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414. https://doi.org/10.1038/nature11439.

    Article  CAS  Google Scholar 

  15. Li CW, Hong J, May AF, Bansal D, Chi S, Hong T, Ehlers G, Delaire O. Orbitally driven giant phonon anharmonicity in SnSe. Nat Phys. 2015;11(12):1063. https://doi.org/10.1038/nphys3492.

    Article  CAS  Google Scholar 

  16. Mcgaughey AJH, Jain A, Kim HY, Fu B. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J Appl Phys. 2019;125(1):011101. https://doi.org/10.1063/1.5064602.

    Article  CAS  Google Scholar 

  17. Zhao C, Li Z, Fan T, **ao C, **e Y. Defects engineering with multiple dimensions in thermoelectric materials. Research. 2020;2020:23. https://doi.org/10.34133/2020/9652749.

    Article  CAS  Google Scholar 

  18. Liao B, Qiu B, Zhou J, Huberman S, Esfarjani K, Chen G. Significant reduction of lattice thermal conductivity by the electron-phonon interaction in silicon with high carrier concentrations: a first-principles study. Phys Rev Lett. 2015;114(11):115901. https://doi.org/10.1103/PhysRevLett.114.115901.

    Article  CAS  Google Scholar 

  19. Lin SX, Tan X, Shao H, Xu J, Wu Q, Liu GQ, Zhang WH, Jiang J. Ultralow lattice thermal conductivity in SnTe by manipulating the electron–phonon coupling. J Phys Chem C. 2019;123(26):15996. https://doi.org/10.1021/acs.jpcc.9b03329.

    Article  CAS  Google Scholar 

  20. Allen PB, Feldman JL, Fabian J, Wooten F. Diffusons, locons, propagons: character of atomic vibrations in amorphous Si. Philos Mag Part B. 1999;79(11):1715. https://doi.org/10.1080/014186399255836.

    Article  CAS  Google Scholar 

  21. Kakkad R, Smith J, Lau WS, Fonash SJ, Kerns R. Crystallized Si films by low-temperature rapid thermal annealing of amorphous silicon. J Appl Phys. 1989;65(5):2069. https://doi.org/10.1063/1.342851.

    Article  CAS  Google Scholar 

  22. Cahill DG, Fischer HE, Klitsner T, Swartz E. Thermal conductivity of thin films: measurements and understanding. J Vac Sci Technol A. 1989;7(3):1259. https://doi.org/10.1116/1.576265.

    Article  CAS  Google Scholar 

  23. Cahill DG, Katiyar M, Abelson JR. Thermal conductivity of a-Si: H thin films. Phys Rev B. 1994;50(9):6077. https://doi.org/10.1103/PhysRevB.50.6077.

    Article  CAS  Google Scholar 

  24. Shao H, Tan X, Hu T, Liu GQ, Jiang J, Jiang H. First-principles study on the lattice dynamics and thermodynamic properties of Cu2GeSe3. EPL. 2015;109(4):47004. https://doi.org/10.1209/0295-5075/109/47004.

    Article  CAS  Google Scholar 

  25. Chen Z, Zhang X, Lin S, Chen L, Pei Y. Rationalizing phonon dispersion for lattice thermal conductivity of solids. Natl Sci Rev. 2018;5(6):888. https://doi.org/10.1093/nsr/nwy097.

    Article  CAS  Google Scholar 

  26. Kang JS, Li M, Wu H, Nguyen H, Hu Y. Experimental observation of high thermal conductivity in boron arsenide. Science. 2018;361(6402):575. https://doi.org/10.1126/science.aat5522.

    Article  CAS  Google Scholar 

  27. Tian F, Song B, Chen X, Ravichandran NK, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu TH. Unusual high thermal conductivity in boron arsenide bulk crystals. Science. 2018;361(6402):582. https://doi.org/10.1126/science.aat7932.

    Article  CAS  Google Scholar 

  28. Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang PY, Cahill DG, Lv B. High thermal conductivity in cubic boron arsenide crystals. Science. 2018;361(6402):579. https://doi.org/10.1126/science.aat8982.

    Article  CAS  Google Scholar 

  29. Lee S, Esfarjani K, Luo T, Zhou J, Tian Z, Chen G. Resonant bonding leads to low lattice thermal conductivity. Nat Commun. 2014;5:3525. https://doi.org/10.1038/ncomms4525.

    Article  Google Scholar 

  30. Delaire O, Ma J, Marty K, May AF, McGuire MA, Du MH, Singh DJ, Podlesnyak A, Ehlers G, Lumsden MD, Sales BC. Giant anharmonic phonon scattering in PbTe. Nat Mater. 2011;10(8):614. https://doi.org/10.1038/nmat3035.

    Article  CAS  Google Scholar 

  31. Toberer ES, Zevalkink A, Snyder GJ. Phonon engineering through crystal chemistry. J Mater Chem. 2011;21(40):15843. https://doi.org/10.1039/c1jm11754h.

    Article  CAS  Google Scholar 

  32. Slack GA, Tsoukala VG. Some properties of semiconducting IrSb3. J Appl Phys. 1994;76(3):1665. https://doi.org/10.1063/1.357750.

    Article  CAS  Google Scholar 

  33. Slack GA. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids. 1973;34(2):321. https://doi.org/10.1016/0022-3697(73)90092-9.

    Article  CAS  Google Scholar 

  34. Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6(3):183. https://doi.org/10.1038/nmat1849.

    Article  CAS  Google Scholar 

  35. Wan X, Turner AM, Vishwanath A, Savrasov SY. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys Rev B. 2011;83(20):205101. https://doi.org/10.1103/PhysRevB.83.205101.

    Article  CAS  Google Scholar 

  36. Li F, Huang X, Lu J, Ma J, Liu Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nat Phys. 2017;14(1):30. https://doi.org/10.1038/nphys4275.

    Article  CAS  Google Scholar 

  37. Pan Y, He B, Helm T, Chen D, Schnelle W, Felser C. Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2. Nat Commun. 2022;13(1):3909. https://doi.org/10.1038/s41467-022-31372-7.

    Article  CAS  Google Scholar 

  38. Guo Q, Yang B, **a L, Gao W, Liu H, Chen J, **ang Y, Zhang S. Three dimensional photonic Dirac points in metamaterials. Phys Rev Lett. 2017;119(21):213901. https://doi.org/10.1103/PhysRevLett.119.213901.

    Article  Google Scholar 

  39. Sharma R, Indu, Kumar P. Scattering events and heat conductivity of layered La2-xSrxCuO4 superconductors. Int J Phys. 2016;4(4):106. https://doi.org/10.12691/ijp-4-4-4.

    CAS  Google Scholar 

  40. Callaway J. Model for lattice thermal conductivity at low temperatures. Phys Rev. 1959;113(4):1046. https://doi.org/10.1103/PhysRev.113.1046.

    Article  CAS  Google Scholar 

  41. Ward A, Broido DA. Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys Rev B. 2010;81(8):085205. https://doi.org/10.1103/physrevb.80.125203.

    Article  Google Scholar 

  42. McGaughey AJH, Jain A, Kim HY. Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation. J Appl Phys. 2019;125(1):011101. https://doi.org/10.1063/1.5064602.

    Article  CAS  Google Scholar 

  43. Slack GA. The Thermal Conductivity of Nonmetallic Crystals. Solid State Physics. 1979;34:1. https://doi.org/10.1016/S0081-1947(08)60359-8.

    Google Scholar 

  44. Debye P. Zur Theorie der spezifischen Wärmen. Annalen der Physik. 1912;344(14):789. https://doi.org/10.1002/andp.19123441404.

    Article  Google Scholar 

  45. Ibrahim D, Vaney JB, Sassi S, Candolfi C, Ohorodniichuk V, Levinsky P, Semprimoschnig C, Dauscher A, Lenoir B. Reinvestigation of the thermal properties of single-crystalline SnSe. Appl Phys Lett. 2017;110(3):032103. https://doi.org/10.1063/1.4974348.

  46. ** M, Shao H, Hu H, Li D, Shen H, Xu J, Jiang J. Growth and characterization of large size undoped p-type SnSe single crystal by horizontal Bridgman method. J Alloy Compd. 2017;712:857. https://doi.org/10.1016/j.jallcom.2017.04.110.

  47. Morelli DT, Slack GA. High lattice thermal conductivity solids. Therm Conduct Mater. 2006. https://doi.org/10.1007/0-387-25100-6_2.

  48. Caillat T. Low-temperature transport properties of p-type CoSb3. Phys Rev B. 1995;51:9622. https://doi.org/10.1103/physrevb.51.9622.

  49. Sales B, Mandrus D, Williams RK. Filled skutterudite antimonides: a new class of thermoelectric materials. Science. 1996;272:1325. https://doi.org/10.2307/2889796.

  50. Ma N, Zhang Z, Nan P, Bai W, Li K, Zhao J, Zhou S, Ge B, Yang J, **ao C, **e Y. Phonon symphony of stacked multilayers and weak bonds lowers lattice thermal conductivity. Adv Mater. 2022;34(30):2202677. https://doi.org/10.1002/adma.202202677.

    Article  CAS  Google Scholar 

  51. Che J, Liu X, Wang X, Zhang Q, Liang G, Zhang S. Fluctuating bonding leads to glass-like thermal conductivity in perovskite rare-earth tantalates. Acta Mater. 2022;237:118162. https://doi.org/10.1016/j.actamat.2022.118162.

    Article  CAS  Google Scholar 

  52. He J, Hu Y, Li D, Chen J. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. 2021;15:3804. https://doi.org/10.1007/s12274-021-3908-8.

    Article  CAS  Google Scholar 

  53. Zhang Z, Zhao K, Chen H, Ren Q, Yue Z, Wei TR, Qiu P, Chen L, Shi X. Entropy engineering induced exceptional thermoelectric and mechanical performances in Cu2-yAgyTe1-2xSxSex. Acta Mater. 2022;224:117512. https://doi.org/10.1016/j.actamat.2021.117512.

    Article  CAS  Google Scholar 

  54. Liu WD, Yang L, Chen ZG, Zou J. Promising and eco-friendly Cu2X-based thermoelectric materials: progress and applications. Adv Mater. 2020;32(8):1905703. https://doi.org/10.1002/adma.201905703.

    Article  CAS  Google Scholar 

  55. Zhao K, Liu K, Yue Z, Wang Y, Song Q, Li J, Guan M, Xu Q, Qiu P, Zhu H, Chen L, Shi X. Are Cu2Te-based compounds excellent thermoelectric materials? Adv Mater. 2019;31(49):1903480. https://doi.org/10.1002/adma.201903480.

    Article  CAS  Google Scholar 

  56. Mukherjee S, Parasuraman R, Umarji AM, Rogl G, Rogl P, Chattopadhyay K. Effect of Fe alloying on the thermoelectric performance of Cu2Te. J Alloys Compd. 2020;817:152729. https://doi.org/10.1016/j.jallcom.2019.152729.

    Article  CAS  Google Scholar 

  57. Lin S, Li W, Li S, Zhang X, Chen Z, Xu Y, Chen Y, Pei Y. High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons. Joule. 2017;1(4):816. https://doi.org/10.1016/j.joule.2017.09.006.

    Article  CAS  Google Scholar 

  58. Li W, Lin S, Weiss M, Chen Z, Li J, Xu Y, Zeier WG, Pei Y. Crystal structure induced ultralow lattice thermal conductivity in thermoelectric Ag9AlSe6. Adv Energy Mater. 2018;8(18):1800030. https://doi.org/10.1002/aenm.201800030.

    Article  CAS  Google Scholar 

  59. Chen Z, Zhang X, Pei Y. Manipulation of phonon transport in thermoelectrics. Adv Mater. 2018;30(17):1705617. https://doi.org/10.1002/adma.201705617.

    Article  CAS  Google Scholar 

  60. Liu JY, Chen L, Wu LM. Ag9GaSe6: high-pressure-induced Ag migration causes thermoelectric performance irreproducibility and elimination of such instability. Nat Commun. 2022;13(1):2966. https://doi.org/10.1038/s41467-022-30716-7.

    Article  CAS  Google Scholar 

  61. Agne MT, Anand S, Snyder GJ. Inherent anharmonicity of harmonic solids. Research. 2022;2022:1. https://doi.org/10.34133/2022/9786705.

    Article  CAS  Google Scholar 

  62. Zhang C, Dou Y, Chen J, Fang S, Xu W, Wu X, Hu L, Liu F, Li Y, Li J. Cubic-spinel AgIn5S8-based thermoelectric materials: synthesis, phonon transport and defect chemistry. Mater Today Energy. 2022;27:101029. https://doi.org/10.1016/j.mtener.2022.101029.

    Article  CAS  Google Scholar 

  63. Ohnishi M, Tadano T, Tsuneyuki S, Shiomi J. Anharmonic phonon renormalization and thermal transport in the type-IBa8Ga16Sn30 clathrate from first principles. Phys Rev B. 2022;106(2):024303. https://doi.org/10.1103/PhysRevB.106.024303.

    Article  CAS  Google Scholar 

  64. Gayner C, Sharma R, Malik I, Kumar M, Singh S, Kumar K, Tahalyani J, Srivastava T, Kar KK, Yokoi H, Naskar AK. Enhanced thermoelectric performance of PbSe-graphene nanocomposite manufactured with acoustic cavitation induced defects. Nano Energy. 2022;94:106943. https://doi.org/10.1016/j.nanoen.2022.106943.

    Article  CAS  Google Scholar 

  65. Huang S, Wei TR, Chen H, **ao J, Zhu M, Zhao K, Shi X. Thermoelectric Ag2Se: imperfection, homogeneity, and reproducibility. ACS Appl Mater Interfaces. 2021;13(50):60192. https://doi.org/10.1021/acsami.1c18483.

    Article  CAS  Google Scholar 

  66. Qiu J, Luo T, Yan Y, **a F, Yao L, Tan X, Yang D, Tan G, Su X, Wu J, Tang X. Enhancing the thermoelectric and mechanical properties of Bi0.5Sb1.5Te3 modulated by the texture and dense dislocation networks. ACS Appl Mater Interfaces. 2021;13(49):58974. https://doi.org/10.1021/acsami.1c19172.

    Article  CAS  Google Scholar 

  67. Zhao X, Ning S, Qi N, Li Y, Dong Y, Zhang H, Liu J, Ye B, Chen Z. Synergetic optimization of electrical and thermal transport properties by Cu vacancies and nanopores in Cu2Se. ACS Appl Mater Interfaces. 2021;13(49):58936. https://doi.org/10.1021/acsami.1c18818.

    Article  CAS  Google Scholar 

  68. Karthikeyan V, Oo SL, Surjadi JU, Li X, Theja VCS, Kannan V, Lau SC, Lu Y, Lam KH, Roy VAL. Defect engineering boosted ultrahigh thermoelectric power conversion efficiency in polycrystalline SnSe. ACS Appl Mater Interfaces. 2021;13(49):58701. https://doi.org/10.1021/acsami.1c18194.

    Article  CAS  Google Scholar 

  69. Zhang T, Deng S, Zhao X, Ruan X, Qi N, Chen Z, Su X, Tang X. Regulation of Ge vacancies through Sm do** boosting superior thermoelectric performance in GeTe. J Mater Chem A. 2022;10:3698. https://doi.org/10.1039/d1ta10711a.

    Article  CAS  Google Scholar 

  70. Wang B, Zheng S, Wang Q, Li Z, Li J, Zhang Z, Wu Y, Zhu B, Wang S, Chen Y, Chen L, Chen ZG. Synergistic modulation of power factor and thermal conductivity in Cu3SbSe4 towards high thermoelectric performance. Nano Energy. 2020;71:104658. https://doi.org/10.1016/j.nanoen.2020.104658.

    Article  CAS  Google Scholar 

  71. Chen ZG, Shi X, Zhao LD, Zou J. High-performance SnSe thermoelectric materials: progress and future challenge. Prog Mater Sci. 2018;97:283. https://doi.org/10.1016/j.pmatsci.2018.04.005.

    Article  CAS  Google Scholar 

  72. Bhattacharya M, Ranjan M, Kumar N, Maiti T. Performance analysis and optimization of a SnSe-based thermoelectric generator. ACS Appl Energy Mater. 2021;4(8):8211. https://doi.org/10.1021/acsaem.1c01466.

    Article  CAS  Google Scholar 

  73. Li F, Wang H, Huang R, Chen W, Zhang H. Recent advances in snse nanostructures beyond thermoelectricity. Adv Funct Mater. 2022;32(26):2200516. https://doi.org/10.1002/adfm.202200516.

    Article  CAS  Google Scholar 

  74. Sist M, Zhang J, Brummerstedt Iversen B. Crystal structure and phase transition of thermoelectric SnSe. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2016;72(3):310. https://doi.org/10.1107/S2052520616003334.

    Article  CAS  Google Scholar 

  75. Hu MY, Yong X, English NJ, Tse JS. Onset of anharmonicity and thermal conductivity in SnSe. Phys Rev B. 2021;104(18):184303. https://doi.org/10.1103/PhysRevB.104.184303.

    Article  CAS  Google Scholar 

  76. Hu MY, Toellner TS, Dauphas N, Alp EE, Zhao J. Moments in nuclear resonant inelastic X-ray scattering and their applications. Phys Rev B. 2013;87(6):064301. https://doi.org/10.1103/PhysRevB.87.064301.

    Article  CAS  Google Scholar 

  77. Tse JS. Ab initio molecular dynamics with density functional theory. Ann Rev Phys Chem. 2002;53(1):249. https://doi.org/10.1146/annurev.physchem.53.090401.105737.

    Article  CAS  Google Scholar 

  78. Helfand E. Transport coefficients from dissipation in a canonical ensemble. Phys Rev. 1960;119(1):1. https://doi.org/10.1103/PhysRev.119.1.

    Article  Google Scholar 

  79. Fang J, Pilon L. Tuning thermal conductivity of nanoporous crystalline silicon by surface passivation: a molecular dynamics study. Appl Phys Lett. 2012;101(1):011909. https://doi.org/10.1063/1.4733352.

    Article  CAS  Google Scholar 

  80. Qiu W, Wu L, Ke X, Yang J, Zhang W. Diverse lattice dynamics in ternary Cu-Sb-Se compounds. Sci Rep. 2015;5:13643. https://doi.org/10.1038/srep13643.

    Article  Google Scholar 

  81. Wei TR, Wu CF, Sun W, Pan Y, Li JF. Is Cu3SbSe3 a promising thermoelectric material? RSC Adv. 2015;5(53):42848. https://doi.org/10.1039/c5ra03953c.

    Article  CAS  Google Scholar 

  82. Chen T, Ming H, Qin X, Zhu C, Huang L, Hou Y, Li D, Zhang J, **n H. Improving the power factor and figure of merit of p-type CuSbSe2 via introducing Sb vacancies. J Mater Chem C. 2021;9(41):14858. https://doi.org/10.1039/d1tc02728j.

    Article  CAS  Google Scholar 

  83. Zhang D, Yang J, Jiang Q, Fu L, **ao Y, Luo Y, Zhou Z. Ternary CuSbSe2 chalcostibite: facile synthesis, electronic-structure and thermoelectric performance enhancement. J Mater Chem A. 2016;4(11):4188. https://doi.org/10.1039/c6ta00039h.

    Article  CAS  Google Scholar 

  84. Li W, Wu Y, Lin S, Chen Z, Li J, Zhang X, Zheng L, Pei Y. Advances in environment-friendly SnTe thermoelectrics. ACS Energy Lett. 2017;2(10):2349. https://doi.org/10.1021/acsenergylett.7b00658.

    Article  CAS  Google Scholar 

  85. Zhang Q, Wang H, Zhang Q, Liu W, Yu B, Wang H, Wang D, Ni G, Chen G, Ren Z. Effect of silicon and sodium on thermoelectric properties of thallium-doped lead telluride-based materials. Nano Lett. 2012;12(5):2324. https://doi.org/10.1021/nl3002183.

    Article  CAS  Google Scholar 

  86. Li S, Liu X, Liu Y, Liu F, Luo J, Pan F. Optimized hetero-interfaces by tuning 2D SnS2 thickness in Bi2Te2.7Se0.3/SnS2 nanocomposites to enhance thermoelectric performance. Nano Energy. 2017;39:297. https://doi.org/10.1016/j.nanoen.2017.07.011.

    Article  CAS  Google Scholar 

  87. Tao Q, Meng F, Zhang Z, Cao Y, Tang Y, Zhao J, Su X, Uher C, Tang X. The origin of ultra-low thermal conductivity of the Bi2Te2S compound and boosting the thermoelectric performance via carrier engineering. Mater Today Phys. 2021;20:100472. https://doi.org/10.1016/j.mtphys.2021.100472.

    Article  CAS  Google Scholar 

  88. Dong X, Cui W, Liu WD, Zheng S, Gao L, Yue L, Wu Y, Wang B, Zhang Z, Chen L, Chen ZG. Synergistic band convergence and defect engineering boost thermoelectric performance of SnTe. J Mater Sci Technol. 2021;86:204. https://doi.org/10.1016/j.jmst.2021.01.040.

    Article  CAS  Google Scholar 

  89. Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G. Phonon conduction in PbSe, PbTe, and PbTe1-xSex from first-principles calulations. Phys Rev B. 2012;85(18):184303. https://doi.org/10.1103/physrevb.85.184303.

    Article  Google Scholar 

  90. Wang T, Dou K, Wang H, Kim J, Wang X, Su W, Chen T, Kim W, Wang C. Higher-order anharmonicity leads to ultra-low thermal conductivity and high output power density of SnTe-based thermoelectric materials and modules. Mater Today Phys. 2022;26:100748. https://doi.org/10.1016/j.mtphys.2022.100748.

    Article  CAS  Google Scholar 

  91. Miyata M. Anharmonic vibration of Ag atom in low lattice thermal conductivity chain structure phosphide Ag3SnP7. J Appl Phys. 2021;130(3):035104. https://doi.org/10.1063/5.0056172.

    Article  CAS  Google Scholar 

  92. Tadano T, Tsuneyuki S. Self-consistent phonon calculations of lattice dynamical properties in cubicSrTiO3 with first-principles anharmonic force constants. Phys Rev B. 2015;92(5):054301. https://doi.org/10.1103/physrevb.92.054301.

    Article  Google Scholar 

  93. Dutta M, Prasad MVD, Pandey J, Soni A, Waghmare UV, Biswas K. Local symmetry breaking suppresses thermal conductivity in crystalline solids. Angew Chem Int Ed. 2022;61(15):e202200071. https://doi.org/10.1002/anie.202200071.

    Article  CAS  Google Scholar 

  94. Callaway J. Model of lattice thermal conductivity at low temperatures. Phys Rev. 1959;113(4):1046. https://doi.org/10.1103/PhysRev.113.1046.

    Article  CAS  Google Scholar 

  95. Slack GA. Effect of isotopes on low-temperature thermal conductivity. Phys Rev. 1957;105(3):829. https://doi.org/10.1103/physrev.105.829.

    Article  CAS  Google Scholar 

  96. Glauber RJ. Coherent and incoherent states of the radiation field. Phys Rev. 1963;131(6):2766. https://doi.org/10.1103/PhysRev.131.2766.

    Article  Google Scholar 

  97. Johari KK, Bhardwaj R, Chauhan NS, Bathula S, Auluck S, Dhakate SR, Gahtori B. High thermoelectric performance in n-type degenerate ZrNiSn-based half-Heusler alloys driven by enhanced weighted mobility and lattice anharmonicity. ACS Appl Energy Mater. 2021;4(4):3393. https://doi.org/10.1021/acsaem.0c03152.

    Article  CAS  Google Scholar 

  98. **a K, Hu C, Fu C, Zhao X, Zhu T. Half-Heusler thermoelectric materials. Appl Phys Lett. 2021;118(14):140503. https://doi.org/10.1063/5.0043552.

    Article  CAS  Google Scholar 

  99. Bhui A, Ghosh T, Pal K, Singh Rana K, Kundu K, Soni A, Biswas K. Intrinsically low thermal conductivity in the n-type vacancy-ordered double perovskite Cs2SnI6: octahedral rotation and anharmonic rattling. Chem Mater. 2022;34(7):3301. https://doi.org/10.1021/acs.chemmater.2c00084.

    Article  CAS  Google Scholar 

  100. Shi XL, Zou J, Chen ZG. Advanced thermoelectric design: from materials and structures to devices. Chem Rev. 2020;120(15):7399. https://doi.org/10.1021/acs.chemrev.0c00026.

    Article  CAS  Google Scholar 

  101. Chen Z, Jian Z, Li W, Chang Y, Ge B, Hanus R, Yang J, Chen Y, Huang M, Snyder GJ, Pei Y. Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence. Adv Mater. 2017;29(23):1606768. https://doi.org/10.1002/adma.201606768.

    Article  CAS  Google Scholar 

  102. Chen Z, Ge B, Li W, Lin S, Shen J, Chang Y, Hanus R, Snyder GJ, Pei Y. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics. Nat Commun. 2017;8:13828. https://doi.org/10.1038/ncomms13828.

    Article  CAS  Google Scholar 

  103. Lin S, Li W, Chen Z, Shen J, Ge B, Pei Y. Tellurium as a high-performance elemental thermoelectric. Nat Commun. 2016;7:10287. https://doi.org/10.1038/ncomms10287.

    Article  CAS  Google Scholar 

  104. Zhou J, Wu Y, Chen Z, Nan P, Ge B, Li W, Pei Y. Manipulation of defects for high-performance thermoelectric PbTe-based alloys. Small Struct. 2021;2(7):2100016. https://doi.org/10.1002/sstr.202100016.

    Article  CAS  Google Scholar 

  105. Wu Y, Chen Z, Nan P, **ong F, Lin S, Zhang X, Chen Y, Chen L, Ge B, Pei Y. Lattice strain advances thermoelectrics. Joule. 2019;3(5):1276. https://doi.org/10.1016/j.joule.2019.02.008.

    Article  CAS  Google Scholar 

  106. Pei Y, Lalonde A, Iwanaga S, Snyder GJ. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy Environ Sci. 2011;4(6):2085. https://doi.org/10.1039/c0ee00456a.

    Article  CAS  Google Scholar 

  107. Kim SI, Lee KH, Mun HA, Kim HS, Hwang SW, Roh JW, Yang DJ, Shin WH, Li XS, Lee YH. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science. 2015;348(6230):109. https://doi.org/10.1126/science.aaa4166.

    Article  CAS  Google Scholar 

  108. Sun Z, Jian Z, Mao HK, Ahuja R. Peierls distortion mediated reversible phase transition in GeTe under pressure. Proc Natl Acad Sci. 2012;109(16):5948. https://doi.org/10.2307/41588453.

    Article  CAS  Google Scholar 

  109. Nishimura T, Sakai H, Mori H, Akiba K, Usui H, Ochi M, Kuroki K, Miyake A, Tokunaga M, Uwatoko Y. Large enhancement of thermoelectric efficiency due to a pressure-induced Lifshitz transition in SnSe. Phys Rev Lett. 2020;122(22):226601. https://doi.org/10.1103/physrevlett.122.226601.

    Article  CAS  Google Scholar 

  110. Chen LC, Chen PQ, Li WJ, Zhang Q, Chen XJ. Enhancement of thermoelectric performance across the topological phase transition in dense lead selenide. Nat Mater. 2019;18(12):1. https://doi.org/10.1038/s41563-019-0499-9.

    Article  CAS  Google Scholar 

  111. Cui J, Li S, **a C, Chen Y, He J. Pressure effects on the electrical transport and anharmonic lattice dynamics of r-GeTe: a first-principles study. J Materiomics. 2021;7(6):1190. https://doi.org/10.1016/j.jmat.2021.03.008.

    Article  Google Scholar 

  112. Chaput L. Direct solution to the linearized phonon Boltzmann equation. Phys Rev Lett. 2013;110(26):265506. https://doi.org/10.1103/physrevlett.110.265506.

    Article  Google Scholar 

  113. Faraji S, Allaei SMV, Amsler M. Thermal conductivity of CaF2 at high pressure. Phys Rev B. 2021;103(13):134301. https://doi.org/10.1103/physrevb.103.134301.

    Article  CAS  Google Scholar 

  114. Cazorla C, Errandonea D. Comment on “High-pressure phases of group-II difluorides: polymorphism and superionicity”. Phys Rev B. 2018;98(18):186101. https://doi.org/10.1103/physrevb.98.186101.

    Article  CAS  Google Scholar 

  115. Giannozzi P. Advanced capabilities for materials modelling with quantum ESPRESSO. J Phys Condens Matter. 2017;29(46):465901. https://doi.org/10.1088/1361-648x/aa8f79.

    Article  CAS  Google Scholar 

  116. Togo A, Tanaka I. First principles phonon calculations in materials science. Scr Mater. 2015;108:1. https://doi.org/10.1016/j.scriptamat.2015.07.021.

    Article  CAS  Google Scholar 

  117. Zhang Z, Yao H, Wang Q, Xue W, Wang Y, Yin L, Wang X, Li X, Chen C, Sui J, Lin X, Chen Y, Liu X, Mao J, **e G, Zhang Q. Achieving high thermoelectric performance in severely distorted YbCd2Sb2. Adv Funct Mater. 2022;21:2205215. https://doi.org/10.1002/adfm.202205215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Youth Innovation Promotion Association CAS (No. 2019298) and Zhejiang Provincial High-level Talent Special Support Plan (No. 2020R52032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Liang, **ao-Jian Tan or Jun Jiang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, CD., Liang, B., Huang, WJ. et al. Phonon engineering significantly reducing thermal conductivity of thermoelectric materials: a review. Rare Met. 42, 2825–2839 (2023). https://doi.org/10.1007/s12598-023-02302-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02302-3

Keywords

Navigation