Log in

Alloy Corrosion by Hot CO2 Gases

  • Nuclear Materials, Oxidation, Supercritical CO2, and Corrosion Behavior
  • Published:
JOM Aims and scope Submit manuscript

Abstract

High-temperature corrosion of heat-resisting alloys by CO2 produces external oxide scales and, in many cases, simultaneous internal carburization. In general, higher alloy chromium levels are required to achieve protective chromia formation in CO2 compared with in air. Corrosion reaction mechanisms are examined, particularly the thermodynamics which allow internal carburization of alloys exposed to low-carbon activity gases, and the ways in which carbon can penetrate oxide scales. The effects of other gas phase oxidants and of alloy manganese and silicon on these processes are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reprinted with permission from Ref. 18)

Fig. 3

(Reprinted with permission from Ref. 33)

Fig. 4

(Reprinted with permission from Ref. 25)

Fig. 5

(Reprinted with permission from Ref. 18)

Fig. 6

(Reprinted with permission from Ref. 21)

Fig. 7

(Reprinted with permission from Ref. 29)

Fig. 8

Similar content being viewed by others

References

  1. C. Wagner, Zeit. Elektrochem. 63, 772 (1959).

    Google Scholar 

  2. C. Wagner, J. Electrochem. Soc. 99, 369 (1952).

    Article  Google Scholar 

  3. H.E. McCoy, Corrosion 21, 84 (1965).

    Article  Google Scholar 

  4. C.T. Fujii and R.A. Meussner, J. Electrochem. Soc. 114, 435 (1967).

    Article  Google Scholar 

  5. J.E. Antill, A. Peakall, and J.B. Warburton, Corros. Sci. 8, 689 (1968).

    Article  Google Scholar 

  6. G.B. Gibbs, Oxid. Met. 7, 173 (1973).

    Article  Google Scholar 

  7. G.B. Gibbs, M.R. Wootton, W.R. Price, and K.E. Hodgson, Oxid. Met. 7, 185 (1973).

    Article  Google Scholar 

  8. P.L. Harrison, R.B. Dooley, S.K. Lister, D.B. Meadowcroft, J.P. Noplan, R.E. Pendlebury, P.L. Surman, and M.R. Wooton, in Proceedings BNES International Conference on Corrosion of Steels in CO 2 (Reading University, 1974)

  9. D.R. Holmes, R.B. Hill, and L.M. Wyatt (eds.), BNES International Conference on Corrosion of Steels in CO 2 (Reading University, Reading, 1974)

  10. B. Vitalis, in 5th International Conference on Advance in Materials Technology for Fossil Power Plants (Marco Island, Florida, 2007)

  11. A. Robertson, H. Agarwal, M. Gagliano, and A. Seltzer, in 35th International Technical Conference on Clean Coal & Fuel Systems (Clearwater, Florida, 2010)

  12. T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnama, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Guptaf, T. Yamadac, K. Makino, and J. Yu, Chem. Eng. Res. Des. 87, 1003 (2009).

    Article  Google Scholar 

  13. F. Rouillard, G. Molne, L. Martinelli, and J.C. Ruiz, Oxid. Met. 77, 27 (2012).

    Article  Google Scholar 

  14. V. Firouzdor, K. Sridharan, G. Cao, M. Anderson, and T.R. Allen, Corros. Sci. 69, 281 (2013).

    Article  Google Scholar 

  15. R.I. Olivares, P. Marvig, D.J. Young, and W. Stein, Oxid. Met. 84, 585 (2015).

    Article  Google Scholar 

  16. G. Cao, V. Firouzdor, K. Sridharan, M. Anderson, and T.R. Allen, Corros. Sci. 60, 246 (2012).

    Article  Google Scholar 

  17. T.D. Nguyen, J.Q. Zhang, and D.J. Young, Corros. Sci. 76, 231 (2013).

    Article  Google Scholar 

  18. T. Gheno, D. Monceau, J. Zhang, and D.J. Young, Corros. Sci. 53, 2767 (2011).

    Article  Google Scholar 

  19. J.P. Abellan, T. Olszewski, H.J. Penkalla, G.H. Meier, L. Singheiser, and W.J. Quadakkers, Mater. High Temp. 26, 63 (2009).

    Article  Google Scholar 

  20. C.S. Giggins and F.S. Pettit, Oxid. Met. 14, 363 (1980).

    Article  Google Scholar 

  21. D. Young, P. Huczkowski, T. Olszewski, T. Hüttel, L. Singheiser, and W.J. Quadakkers, Corros. Sci. 88, 161 (2014).

    Article  Google Scholar 

  22. F. Rouillard, G. Molne, M. Tabarant, and J.C. Ruiz, Oxid. Met. 77, 57 (2012).

    Article  Google Scholar 

  23. G.H. Meier, K. Jung, N. Mu, N.M. Yanar, F.S. Pettit, J.P. Abellan, T. Olszewski, L.N. Hierro, W.J. Quadakkers, and G.R. Holcomb, Oxid. Met. 74, 319 (2010).

    Article  Google Scholar 

  24. G.H. Meir, W.C. Coons, and R.A. Perkins, Oxid. Met. 17, 235 (1982).

    Article  Google Scholar 

  25. Y. Gong, D.J. Young, P. Kontis, Y.L. Chiu, H. Larsson, A. Shin, J.M. Pearson, M.P. Moody, and R.C. Reed, Acta Mater. 130, 361 (2017).

    Article  Google Scholar 

  26. T.D. Nguyen, J. Zhang, and D.J. Young, Scr. Mater. 69, 9 (2013).

    Article  Google Scholar 

  27. D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed. (Amsterdam: Elsevier, 2016)ISBN 978-0-08-100101-1.

    Google Scholar 

  28. T. Nguyen, J. Zhang, and D.J. Young, Mater. High Temp. 32, 16 (2015).

    Article  Google Scholar 

  29. T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 100, 448 (2015).

    Article  Google Scholar 

  30. M. Haensel, C.A. Boddington, and D.J. Young, Corros. Sci. 45, 967 (2003).

    Article  Google Scholar 

  31. W.B. Jepson, J.E. Antill, and J.B. Warburton, Br. Corros. J. 1, 15 (1965).

    Article  Google Scholar 

  32. R.A. Holm and H.E. Evans, Werkst. Korros. 38, 115 (1987).

    Article  Google Scholar 

  33. T. Gheno, D. Monceau, and D.J. Young, Corros. Sci. 64, 222 (2012).

    Google Scholar 

  34. R.I. Olivares, D.J. Young, T.D. Nguyen, and P. Marvig, Oxid. Met. (2018). https://doi.org/10.1007/s11085-017-9820-7.

    Google Scholar 

  35. T.D. Nguyen, A. La Fontaine, L. Yang, J.M. Cairney, J. Zhang, and D.J. Young, Corros. Sci. 132, 125 (2018).

    Article  Google Scholar 

  36. J.O. Andersson, T. Helander, L. Höglund, P.F. Shi, and B. Sundman, Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26, 273 (2002).

    Article  Google Scholar 

  37. I. Wolf and H.J. Grabke, Solid State Commun. 54, 5 (1985).

    Article  Google Scholar 

  38. J. Robertson and M.I. Manning, Mater. Sci. Tech. 4, 1064 (1988).

    Article  Google Scholar 

  39. A. Atkinson, Rev. Mod. Phys. 57, 437 (1985).

    Article  Google Scholar 

  40. E.C. Potter and G.M.W. Mann, in Proceedings of the 2nd International Congress Metallic Corrosion (NACE, New York, 1963), p. 872

  41. M.R. Taylor, J.M. Calvert, D.G. Lees, and D.B. Meadowcroft, Oxid. Met. 14, 499 (1980).

    Article  Google Scholar 

  42. X.G. Zheng and D.J. Young, Oxid. Met. 42, 163 (1994).

    Article  Google Scholar 

  43. X.G. Zheng, Corros. Sci. 36, 1999 (1994).

    Article  Google Scholar 

  44. D.J. Young, T.D. Nguyen, P. Felfer, J. Zhang, and J.M. Cairney, Scr. Mater. 77, 29 (2014).

    Article  Google Scholar 

  45. K. Natesan and D.L. Rink, in Proceedings of the Annual Conference on Fossil Energy Materials (Oak Ridge, 2017)

  46. C. Yu, T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 98, 516 (2015).

    Article  Google Scholar 

  47. T. Gheno, D. Monceau, and D.J. Young, Corros. Sci. 77, 246 (2013).

    Article  Google Scholar 

  48. C. Yu, J. Zhang, and D.J. Young, Oxid. Met. (2018). https://doi.org/10.1007/s11085-017-9826-1.

    Google Scholar 

  49. C. Yu, J. Zhang, and D.J. Young, Corros. Sci. 112, 214 (2016).

    Article  Google Scholar 

  50. C. Yu, T.D. Nguyen, J. Zhang, and D.J. Young, J. Electrochem. Soc. 163, C106 (2016).

    Article  Google Scholar 

  51. D.J. Young, Carburisation and Metal Dusting. Shreir’s Corrosion, ed. R. Cottis, R. Lindsay, S. Lyon, D.J.D. Scantlebury, F.H. Stott, and M.J. Graham (Elsevier: Amsterdam, 2010)

    Google Scholar 

  52. T.D. Nguyen, A. La Fontaine, J.M. Cairney, J. Zhang, and D.J. Young, Mater. High Temp. (2018). https://doi.org/10.1080/09603409.2017.1389098.

    Google Scholar 

  53. T.D. Nguyen, J. Zhang, and D.J. Young, Corros. Sci. 112, 110 (2016).

    Article  Google Scholar 

  54. T.D. Nguyen, J. Zhang, and D.J. Young, Oxid. Met. 87, 541 (2017).

    Article  Google Scholar 

  55. T.D. Nguyen, J. Zhang, and D.J. Young, Oxid. Met. 83, 575 (2015).

    Article  Google Scholar 

  56. B.A. Pint, in Shreir’s Corrosion, 4th edn, vol 1, pp. 606–645 (2010)

  57. S. Chevalier, Mater. Corros. 65, 109 (2014).

    Article  Google Scholar 

Download references

Acknowledgement

Support from the Australian Research Council’ Discovery Program is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Young.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, D.J., Zhang, J. Alloy Corrosion by Hot CO2 Gases. JOM 70, 1493–1501 (2018). https://doi.org/10.1007/s11837-018-2944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2944-7

Navigation