Log in

Corrosion of iron-, nickel-, and cobalt-base alloys in atmospheres containing carbon and oxygen

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The corrosion of iron-, nickel-, and cobalt-base alloys has been studied in atmospheres containing carbon and oxygen in the temperature range 894–1366 K. It was observed that preformed Cr2O3 films are not effective barriers to carbon transport in atmospheres in which the oxide is not stable but that stable, growing Cr2O3 films are excellent barriers to carbon penetration. The presence of Fe-containing oxides on Fe-Ni-Cr and Fe-Cr alloys cause the scales to be permeable to carbon. This phenomenon was found to be sensitive to alloy surface preparation. Carbon transport through oxide scales may occur by two mechanisms: diffusion or molecular transport through physical defects. The present work has evidence of the latter but cannot rule out the former in cases where the carbon activity is sufficiently large. In gases containing CO and CO2 in which Cr carbide is stable Cr2O3 was found to form at the carbide-alloy interface by oxygen transport through the carbide. In A-CH4 Fe-Ni-Cr were found to undergo graphitization attack. The results were consistent with the formation and subsequent decomposition of metastable carbides, as proposed by Hochmann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Schnaas and J. J. Grabke,Oxid. Met. 12, 387 (1979).

    Google Scholar 

  2. J. Wada, H. Wada, J. F. Elliott, and J. Chipman,Metall. Trans. 2, 2199 (1971).

    Google Scholar 

  3. S. K. Bose and H. J. Grabke,Z. Metallkd. 69, 8 (1978).

    Google Scholar 

  4. U. Gravenhorst and W. Steinkusch,Arch. Eisenhuttenwesen,46, 397 (1975).

    Google Scholar 

  5. H. J. Grabke, U. Gravenhorst, and W. Steinkusch,Werkst. Korros. 27, 291 (1976).

    Google Scholar 

  6. O. van der Biest, J. M. Harrison, and J. Norton, “Characterization of Protective Layers Formed in Carburizing Environments” inProceeding of the International Conference on the Behavior of High-Temperature Alloys in Aggressive Environments, Petten, Holland (October 15–18, 1979).

    Google Scholar 

  7. R. Schueler, “Metal Dusting,”Hydrocarbon Process. 73–75 (Aug. 1972).

  8. R. F. Hochman, “Catastrophic Deterioration of High-Temperature Alloys in Carbonaceous Atmospheres,” inProperties of High-Temperature Alloys, A. Foroulis and F. S. Pettit, eds. (The Electrochemical Society, Princeton, 1977), pp. 715–723.

    Google Scholar 

  9. F. S. Pettit and J. B. Wagner, Jr.,Acta. Metall. 12, 35 (1964).

    Google Scholar 

  10. R. J. Hussey, G. J. Sproule, D. Caplan, and M. J. Graham,Oxid. Met. 11, 65 (1977).

    Google Scholar 

  11. P. L. Surman,Corros. Sci. 13, 825 (1973).

    Google Scholar 

  12. P. L. Surman,Corros. Sci. 13, 113 (1973).

    Google Scholar 

  13. H. Meurer and H. Schmalzried,Archiv. Eisenhuttenwsen,42, 87 (1971).

    Google Scholar 

  14. L. D. Kramer and G. Simkovich,Oxid. Met. 6, 91 (1973).

    Google Scholar 

  15. A. M. Pritchard, J. E. Antill, K. R. J. Cottell, K. A. Peakall, and A. E. Truswell,Oxid. Met. 9, 181 (1975).

    Google Scholar 

  16. G. B. Gibbs,Oxid. Met. 7, 173 (1973).

    Google Scholar 

  17. F. S. Pettit and J. B. Wagner, Jr.,Acta Metall. 12, 41 (1964).

    Google Scholar 

  18. C. S. Giggins and F. S. Pettit,Oxid. Met. 14, 363 (1980).

    Google Scholar 

  19. F. A. Prange,Corrosion,15, 619 (1959).

    Google Scholar 

  20. F. Eberle and R. D. Wylie,Corrosion,15, 622 (1959).

    Google Scholar 

  21. W. B. Hoyt and R. H. Caughey,Corrosion,15, 627 (1959).

    Google Scholar 

  22. P. A. Lefrancois and W. B. Hoyt,Corrosion,19, 360 (1963).

    Google Scholar 

  23. J. D. Noden, C. J. Knight, and M. W. Thomas,Brit. Corros. J. 3, 47 (1963).

    Google Scholar 

  24. A. Norin,Oxid. Met. 9, 259 (1975).

    Google Scholar 

  25. J. E. Forrest, “Corrosion in Crevice and Weld Configurations in Dry Helium” inProceedings of the International Conference on the Behavior of High Temperature Alloys in Aggressive Environments, Petten, Holland (October 15–18, 1979).

    Google Scholar 

  26. JANAF,Thermochemical Tables NSRDS-NBS 37 (U.S. Government Printing Office, Washington, D.C., 1971).

    Google Scholar 

  27. S. Jansson, W. Hübner, G. Östberg, and M. DePourbaix,Br. Corros. J. 4, 21 (1969).

    Google Scholar 

  28. D. L. Douglass and J. S. Armijo,Oxid. Met. 2, 207 (1970).

    Google Scholar 

  29. L. Azaroff,J. Appl. Phys. 32, 1638 (1961).

    Google Scholar 

  30. M. G. C. Cox, B. McEnaney, and V. D. Scott,Philos. Mag. 26, 839 (1972).

    Google Scholar 

  31. F. S. Pettit, J. A. Goebel, and G. W. Goward,Corros. Sci. 9, 903 (1969).

    Google Scholar 

  32. N. Birks, inHigh-Temperature Gas-Metal Reaction in Mixed Environments, S. A. Jansson and Z. A. Foroulis, eds. (AIME, New York, 1973).

    Google Scholar 

  33. C. T. Fujii and R. A. Meussner,J. Electrochem. Soc. 114, 435 (1967).

    Google Scholar 

  34. N. Birks,Br. Corros. J. 3, 56 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, G.H., Coons, W.C. & Perkins, R.A. Corrosion of iron-, nickel-, and cobalt-base alloys in atmospheres containing carbon and oxygen. Oxid Met 17, 235–262 (1982). https://doi.org/10.1007/BF00738385

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738385

Key words

Navigation