Log in

Influence of Process Parameters on the Properties of Additively Manufactured Fiber-Reinforced Polymer Composite Materials: A Review

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) is a potential engineering technique that could be used in various applications owing to its greatest advantages like flexibility in design, least expensive, versatile material synthesis and low material wastage. From various studies, it was understood that the mechanical performance of fiber-reinforced polymer composite materials (FRPCs) manufactured by AM was influenced by the process parameters to a certain extent. Additionally, numerous studies stated that the strength characteristics of the additively manufactured samples from continuous fibers, like carbon and glass, were high when compared with the samples reinforced with short fibers. Various earlier reviews enunciated that the increase in fiber volume fraction increased the strength and stiffness of the AM components many a times, while the mechanical characteristics of the samples also faced a significant increment due to the addition of fibers. Current work focuses on the influence of process parameters like process of 3D printing, materials used, layer thickness and so on upon the properties of additively manufactured FRPCs. Primary focus of the current study is to determine the effect of factors like thickness of the layer, content of the fiber in volume and the build orientation upon the properties of FRPC components manufactured by AM. This study also outlines the influence of some other parameters like loads applied, environment and analysis models on the properties of AM components along with their merits and demerits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2020, with permission from Elsevier

Fig. 3

Copyright 2020, with permission from Elsevier

Fig. 4

Copyright 2020, with permission from Elsevier

Fig. 5

Copyright 2020, with permission from Elsevier

Fig. 6

Copyright 2020, with permission from Elsevier

Fig. 7

Copyright 2020, with permission from Elsevier

Fig. 8

Copyright 2019, with permission from Elsevier. Panels (c) and (d) reprinted from (Ref 67), Copyright 2019, with permission from Elsevier. Panels (e) and (f) reprinted from (Ref 80), Copyright 2019, with permission from Elsevier

Fig. 9

Copyright 2019, with permission from Elsevier

Fig. 10

Copyright 2018, with permission from Elsevier

Similar content being viewed by others

References

  1. P. Brøndsted, H. Lilholt and A. Lystrup, Composite Materials for Wind Power Turbine Blades, Annu. Rev. Mater. Res., 2005, 35, p 505–538.

    Article  Google Scholar 

  2. A.P. Mouritz, E. Gellert, P. Burchill and K. Challis, Review of Advanced Composite Structures for Naval ships and Submarines, Compos. Struct., 2001, 53, p 21–42.

    Article  Google Scholar 

  3. F. Abdel-Hady, Filament Winding of Revolution Structures, J. Reinf. Plast. Compos., 2005, 24, p 855–868.

    Article  CAS  Google Scholar 

  4. Q.F. Cheng, J.P. Wang, J.J. Wen, C.H. Liu, K.L. Jiang, Q.Q. Li and S.S. Fan, Carbon Nanotube/epoxy Composites Fabricated by Resin Transfer Molding, Carbon, 2010, 48, p 260–266.

    Article  CAS  Google Scholar 

  5. A.P. Mouritz, M.K. Bannister, P.J. Falzon and K.H. Leong, Review of Applications for Advanced Three-Dimensional Fibre Textile Composites, Compos. Part A Appl. Sci. Manuf., 1999, 30, p 1445–1461.

    Article  Google Scholar 

  6. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen and D. Hui, Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and challenges, Compos. Part B Eng., 2018, 143, p 172–196.

    Article  CAS  Google Scholar 

  7. F. Ning, W. Cong, J. Qiu, J. Wei and S. Wang, Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused deposition Modeling, Compos Part B Eng., 2015, 80, p 369–378.

    Article  CAS  Google Scholar 

  8. B. Berman, 3-D Printing: The New Industrial Revolution, Bus. Horiz., 2012, 55, p 155–162.

    Article  Google Scholar 

  9. V. Shanmugam, D.J. Johnson, K. Babu, S. Rajendran, A. Veerasimman, U. Marimuthu, S. Singh, O. Das, R.E. Neisiany, M.S. Hedenqvist, F. Berto and S. Ramakrishna, The Mechanical Testing and Performance Analysis of Polymer-Fibre Composites Prepared Through the Additive Manufacturing, Polym. Test., 2020 https://doi.org/10.1016/j.polymertesting.2020.106925

    Article  Google Scholar 

  10. H.L. Tekinalp, V. Kunc, G.M. Velez-Garcia, C.E. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, H.L. Tekinalp and C.E. Duty, Highly Oriented Carbon Fiber-Polymer Composites via Additive Manufacturing, Compos. Sci. Technol., 2014, 105, p 144–150.

    Article  CAS  Google Scholar 

  11. X. Tian, T. Liu, C. Yang, Q. Wang and D. Li, Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, Compos. Part A Appl Sci Manuf., 2016, 88, p 198–205.

    Article  CAS  Google Scholar 

  12. W. Hao, Y. Liu, H. Zhou, H. Chen and D. Fang, Preparation and Characterization of 3D Printed Continuous Carbon Fiber Reinforced Thermosetting Composites, Polym. Test., 2018, 65, p 29–34.

    Article  CAS  Google Scholar 

  13. M. Gebler, A.J.M.S. Uiterkamp and C. Visser, A Global Sustainability Perspective on 3D Printing Technologies, Energy Policy, 2014, 74, p 158–167.

    Article  CAS  Google Scholar 

  14. M. Dawoud, I. Taha and S.J. Ebeid, Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques, J. Manuf. Process., 2016, 21, p 39–45.

    Article  Google Scholar 

  15. G. Griffini, M. Invernizzi, M. Levi, G. Natale, G. Postiglione and S. Turri, 3D-Printable CFR Polymer Composites with Dual-Cure Sequential IPNs, Polymer, 2016, 91, p 174–179.

    Article  CAS  Google Scholar 

  16. M. Ramesh, C. Deepa, L. Rajeshkumar, M.R. Sanjay and S. Siengchin, Life-Cycle and Environmental Impact Assessments on Processing of Plant FIBRES and its Bio-Composites: A Critical Review, J. Ind. Text., 2020 https://doi.org/10.1177/1528083720924730

    Article  Google Scholar 

  17. L.G. Blok, M.L. Longana, H. Yu and B.K.S. Woods, An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites, Addit. Manuf., 2018, 22, p 176–186.

    CAS  Google Scholar 

  18. X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos. Part B Eng., 2017, 110, p 442–158.

    Article  CAS  Google Scholar 

  19. B. Brenken, E. Barocio, A. Favaloro, V. Kunc and R.B. Pipes, Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review, Addit. Manuf., 2018, 21, p 1–16.

    CAS  Google Scholar 

  20. B.G. Compton and J.A. Lewis, 3D Printing of Lightweight Cellular Composites, Adv. Mater., 2014, 26, p 5930–5935.

    Article  CAS  Google Scholar 

  21. G.D. Goh, Y.L. Yap, S. Agarwala and W.Y. Yeong, Recent Progress in Additive Manufacturing of Fiber Reinforced Polymer Composite, Adv. Mater. Technol., 2019, 4, p 1800271.

    Article  Google Scholar 

  22. M. Ramesh, L. Rajeshkumar, and V. Bhuvaneshwari, Bamboo Fiber Reinforced Composites. In: Jawaid M., Mavinkere Rangappa S., Siengchin S. (eds) Bamboo Fiber Composites. Composites Science and Technology. Springer, Singapore

  23. N. Mohan, P. Senthil, S. Vinodh and N. Jayanth, A Review on Composite Materials and Process Parameters Optimisation for the Fused Deposition Modelling Process, Virtual Phys. Prototyp., 2017, 12, p 47–59.

    Article  Google Scholar 

  24. L. Prabhu, V. Krishnaraj, S. Gokulkumar, S. Sathish, M.R. Sanjay and S. Siengchin, Mechanical, Chemical and Sound Absorption Properties of Glass/kenaf/waste Tea Leaf Fiber-Reinforced Hybrid Epoxy Composites, J. Ind. Text., 2020 https://doi.org/10.1177/1528083720957392

    Article  Google Scholar 

  25. W. Zhong, L. Fan, Z. Zhang, L. Song and Z. Li, Short Fiber Reinforced Composites for Fused Deposition Modeling, Mater. Sci. Eng. A., 2001, 301, p 125–130.

    Article  Google Scholar 

  26. M.A. Caminero, J.M. Chacón, I. García-Moreno and G.P. Rodríguez, Impact Damage Resistance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling, Compos. Part B Eng., 2018, 148, p 93–103.

    Article  CAS  Google Scholar 

  27. F.V.D. Klift, Y. Koga, A. Todoroki, M. Ueda, Y. Hirano and R. Matsuzaki, 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens, Open J. Compos. Mater., 2016, 6, p 18–27.

    Article  Google Scholar 

  28. J. Justo, L. Távara, L. García-Guzmán and F. París, Characterization of 3D Printed Long Fibre Reinforced Composites, Compos. Struct., 2018, 185, p 537–548.

    Article  Google Scholar 

  29. A.N. Dickson, J.N. Barry, K.A. McDonnell and D.P. Dowling, Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing, Addit. Manuf., 2017, 16, p 146–152.

    CAS  Google Scholar 

  30. D. Balaji, M. Ramesh, T. Kannan et al., Experimental Investigation on Mechanical Properties of Banana/snake Grass Fiber Reinforced Hybrid Composites, Mater Today Proc., 2020 https://doi.org/10.1016/j.matpr.2020.09.548

    Article  Google Scholar 

  31. M.N. Jahangir, K.M.M. Billah, Y. Lin, D.A. Roberson, R.B. Wicker and D. Espalin, Reinforcement of Material Extrusion 3D Printed Polycarbonate Using Continuous Carbon Fiber, Addit. Manuf., 2019, 28, p 354–364.

    CAS  Google Scholar 

  32. R. Matsuzaki, M. Ueda, M. Namiki, T.K. Jeong, H. Asahara, K. Horiguchi, T. Nakamura, A. Todoroki and Y. Hirano, Three-Dimensional Printing of Continuous Fiber Composites by in-Nozzle Impregnation, Sci. Rep., 2016, 6, p 23058.

    Article  Google Scholar 

  33. A. Bandyopadhyay, K.B. Vamsi, A. Sheldon, Bernard, S. Bose, Microlayered manufacturing. In: Micromanufacturing des. Manuf. Micro-products. Wiley, Inc; 2011. p. 97–158.

  34. D. Bourell, J.P. Kruth, M. Leu, G. Levy, D. Rosen, A.M. Beese et al., Materials for Additive Manufacturing, CIRP Ann–Manuf, Technol., 2017, 66, p 659–681.

    Google Scholar 

  35. N. Karthi, K. Kumaresan, S. Sathish, S. Gokulkumar, L. Prabhu and N. Vigneshkumar, An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas, Mater Today: Proc, 2020, 27(3), p 2828–2834.

    Article  CAS  Google Scholar 

  36. P. Parandoush and D. Lin, A Review on Additive Manufacturing of Polymer-Fiber Composites, Compos. Struct., 2017, 182, p 36–53.

    Article  Google Scholar 

  37. M. Ramesh, L.R. Kumar, A. Khan and A.M. Asiri, Self-Healing Polymer Composites and its Chemistry, Self-Healing Compos. Mater., 2020 https://doi.org/10.1016/b978-0-12-817354-1.00022-3

    Article  Google Scholar 

  38. X. Wang, M. Jiang, Z. Zhou and J. Gou, 3D Printing of Polymer Matrix Composites: A Review and Prospective, Compos B Eng., 2017, 110, p 442–458.

    Article  CAS  Google Scholar 

  39. Inamuddin, B. Rajender, I.A. Mohd, M. Abdullah Asiri (eds.) Green Adhesives: Preparation, Properties and Applications, p 145–164.

  40. Y. Ibrahim, A. Elkholy, J.S. Schofield, G.W. Melenka and R. Kempers, Effective Thermal Conductivity of 3D-Printed Continuous Fiber Polymer Composites, Adv. Manuf. Polym. Compos. Sci., 2020, 6, p 17–28.

    CAS  Google Scholar 

  41. C. Yang, X. Tian, T. Liu, Y. Cao and D. Li, 3D Printing for Continuous Fiber Reinforced Thermoplastic Composites: Mechanism and Performance, Rap. Prototyp. J., 2017, 23, p 209–215.

    Article  Google Scholar 

  42. M. Ramesh, Flax (Linum usitatissimum L.) Fibre Reinforced Polymer Composite Materials: A Review on Preparation, Properties and Prospects, Prog. Mater. Sci., 2019, 102, p 109–66.

    Article  CAS  Google Scholar 

  43. A.S. Kumar, S.M. Selvi and L. Rajeshkumar, Delamination in Drilling of Sisal/banana Reinforced Composites Produced by Hand Lay-up Process, Appl. Mech. Mater., 2017, 867, p 29–33.

    Article  Google Scholar 

  44. Y. Ming, Y. Duan, B. Wang, H. **ao and X. Zhang, A Novel Route to Fabricate High Performance 3D Printed Continuous Fiber-Reinforced Thermosetting Polymer Composites, Materials, 2019, 12(9), p 1369.

    Article  CAS  Google Scholar 

  45. C.J. Young, Modelling of 3D printed fiber-reinforced plastic composites by classical laminate theory. PhD diss., (2019)

  46. G.C. Brett and J.A. Lewis, 3D Printing of Lightweight Cellular Composites, Adv. Mater., 2014, 26, p 5930–5935.

    Article  Google Scholar 

  47. S. Malek, J.R. Raney, J.A. Lewis and L.J. Gibson, Lightweight 3D Cellular Composites Inspired by Balsa, Bioinspi. Biomimet., 2017, 12, p 026014.

    Article  Google Scholar 

  48. S. Sathish, K. Kumaresan, L. Prabhu and S. Gokulkumar, Experimental Investigation of Mechanical and Morphological Properties of Flax Fiber Reinforced Epoxy Composites Incorporating SiC and Al2O3, Mater Today: Proc., 2019 https://doi.org/10.1016/j.matpr.2019.09.106

    Article  Google Scholar 

  49. L. Jeantet, A. Regazzi, A. Taguet, M.F. Pucci, A.-S. Caro and J.-C. Quantin, Biopolymer Blends for Mechanical Property Gradient 3D Printed Parts, eXP Polym. Lett., 2021, 15, p 137–152.

    Article  CAS  Google Scholar 

  50. P. Fernández, F. Pelayo, D. Ávila, N. Beltrán and D. Blanco, Failure Analysis of Bi-Material FFF Parts, Proc. Manuf., 2019, 41, p 571–578.

    Google Scholar 

  51. D.J. Roach, C.M. Hamel, C.K. Dunn, M.V. Johnson, X. Kuang and H.J. Qi, The m4 3D Printer: A Multi-Material Multi-Method Additive Manufacturing Platform for Future 3D Printed Structures, Addit. Manuf, 2019, 29, p 100819.

    Google Scholar 

  52. S. Gokulkumar, P.R. Thyla, L. Prabhu, S. Sathish and N. Karthi, A Comparative Study on Epoxy Based Composites Filled with Pineapple/areca/ramie Hybridized with Industrial Tea Leaf Wastes/GFRP, Mater Today: Proc., 2019 https://doi.org/10.1016/j.matpr.2019.09.221

    Article  Google Scholar 

  53. Z.C. Kennedy and J.F. Christ, Printing Polymer Blends THROUGH in situ active Mixing During Fused Filament Fabrication, Addit Manuf, 2020 https://doi.org/10.1016/j.addma.2020.101233

    Article  Google Scholar 

  54. M. Ramesh, C. Deepa, U.S. Aswin, H. Eashwar, B. Mahadevan and D. Murugan, Effect of Alkalization on Mechanical and Moisture Absorption Properties of Azadirachta Indica (neem tree) Fiber Reinforced Green Composites, Trans. Ind. Inst. Met., 2017, 70, p 187–199.

    Article  CAS  Google Scholar 

  55. Y. Ming, S. Zhang, W. Han, B. Wang, Y. Duan and H. **ao, Investigation on Process Parameters of 3D Printed Continuous Carbon Fiber-Reinforced Thermosetting Epoxy Composites, Addit. Manuf., 2020, 33, p 101184.

    CAS  Google Scholar 

  56. T. Tezel, V. Kovan, H.E. Camurlu and E.S. Topal, Designing and Manufacturing of Polymer Foam Hybrid Materials Using Fused Deposition Modelling, Adv. Eng. Mater., 2019, 21, p 1800840.

    Article  Google Scholar 

  57. C. Hu, Z. Sun, Y. **ao and Q. Qin, Recent Patents in Additive Manufacturing of Continuous Fiber Reinforced Composites, Recent Patent Mech. Eng., 2019, 12, p 25–36.

    Article  Google Scholar 

  58. S.H.R. Sanei and D. Popescu, 3D-Printed Carbon Fiber Reinforced Polymer Composites: a Systematic Review, J. Compos. Sci., 2020, 4, p 98.

    Article  CAS  Google Scholar 

  59. M. Ramesh and L. Rajeshkumar, Wood Flour Filled Thermoset Composites, Thermoset Composites: Preparation, Properties and Applications, Materials Research Forum, 2018, 38, p 33–65.

    Article  CAS  Google Scholar 

  60. Q. He, H. Wang, K. Fu and L. Ye, 3D Printed Continuous CF/PA6 Composites: Effect of Microscopic Voids on Mechanical Performance, Compos. Sci. Technol., 2020, 191, p 108077.

    Article  CAS  Google Scholar 

  61. Y. Peng, Y. Wu, S. Li, K. Wang, S. Yao, Z. Liu and H. Garmestani, Tailorable Rigidity and Energy-Absorption Capability of 3D Printed Continuous Carbon Fiber Reinforced Polyamide Composites, Compos. Sci. Technol., 2020, 199, p 108337.

    Article  CAS  Google Scholar 

  62. M. Ramesh, K. Palanikumar and K.H. Reddy, Evaluation of Mechanical and Interfacial Properties of Sisal/jute/glass Hybrid Fiber Reinforced Polymer Composites, Trans. Ind. Inst. Met., 2016, 69, p 1851–1859.

    Article  CAS  Google Scholar 

  63. S. Gokulkumar, P.R. Thyla, L. Prabhu and S. Sathish, Characterization and Comparative Analysis on Mechanical and Acoustical Properties of Camellia Sinensis/ananas comosus/glass Fiber Hybrid Polymer Composites, J. Nat. Fiber., 2019 https://doi.org/10.1080/15440478.2019.1675215

    Article  Google Scholar 

  64. S. Kannan, M. Ramamoorthy, E. Sudhagar and B. Gunji, Mechanical Characterization and Vibrational Analysis of 3D Printed PETG and PETG Reinforced with Short Carbon Fiber, AIP Conf. Proc., 2020, 2270, p 030004.

    Article  CAS  Google Scholar 

  65. J. Naranjo-Lozada, H. Ahuett-Garza, P. Orta-Castañón, W.M.H. Verbeeten and D. Sáiz-González, Tensile Properties and Failure Behavior of Chopped and Continuous Carbon Fiber Composites Produced by Additive Manufacturing, Addit. Manuf., 2019, 26, p 227–241.

    CAS  Google Scholar 

  66. E.A. Papon, A. Haque and S.K. Spear, Effects of Functionalization and Annealing in Enhancing the Interfacial Bonding and Mechanical Properties of 3D Printed Fiber-Reinforced Composites, Mater. Today Commun., 2020, 25, p 101365.

    Article  CAS  Google Scholar 

  67. G. Chabaud, M. Castro, C. Denoual and A. Le Duigou, Hygromechanical Properties of 3D Printed Continuous Carbon and Glass Fibre Reinforced Polyamide Composite for Outdoor Structural Applications, Addit. Manuf., 2019, 26, p 94–105.

    CAS  Google Scholar 

  68. M. Ramesh, Kenaf (Hibiscus cannabinus L.) Fibre Based Bio-Materials: A Review on Processing and Properties, Prog. Mater. Sci., 2016, 78–79, p 1–92.

    Article  Google Scholar 

  69. M.R. Khosravani, A. Zolfagharian, M. Jennings and T. Reinicke, Structural Performance of 3D-Printed Composites Under Various Loads and Environmental Conditions, Polym. Test., 2020, 91, p 106770.

    Article  CAS  Google Scholar 

  70. Z. Hou, X. Tian, Z. Zheng, J. Zhang, L. Zhe, D. Li, A.V. Malakhov and A.N. Polilov, A Constitutive Model for 3D Printed Continuous Fiber Reinforced Composite Structures with Variable Fiber Content, Composites Part B., 2020, 189, p 107893.

    Article  CAS  Google Scholar 

  71. L. Prabhu, V. Krishnaraj, S. Sathish, S. Gokulkumar and N. Karthi, Study of Mechanical and Morphological Properties of Jute-tea Leaf Fiber Reinforced Hybrid Composites: Effect of Glass Fiber Hybridization, Mater Today: Proc., 2020, 27, p 2372–2375.

    Article  CAS  Google Scholar 

  72. H. Al Abadi, T. Huu-Tai, V. Paton-Cole and V.I. Patel, Elastic Properties of 3D Printed fibre-Reinforced Structures, Compos. Struct., 2018, 193, p 8–18.

    Article  Google Scholar 

  73. G.W. Melenka, B.K.O. Cheung, J.S. Schofield, M.R. Dawson and J.P. Carey, Evaluation and Prediction of the Tensile Properties of Continuous Fiber-Reinforced 3D Printed Structures, Compos. Struct., 2016, 153, p 866–875.

    Article  Google Scholar 

  74. Y. Swolfs, and S.T. Pinho, Designing and 3D printing continuous fibre-reinforced composites with a high fracture toughness. In: Proceedings of the 31st Technical Conference of the American Society for Composites, pp. 1-8. DESTech Publications; Pennsylvania, USA, 2016.

  75. S. Sathish, K. Kumaresan, L. Prabhu and S. Gokulkumar, Experimental Investigation of Mechanical and FTIR Analysis of Flax Fiber/epoxy Composites Incorporating SiC, Al2O3 and Graphite, Rev. Rom. Mater., 2018, 48, p 476.

    CAS  Google Scholar 

  76. H. Zhang, D. Yang and Y. Sheng, Performance-Driven 3D Printing of Continuous Curved Carbon Fibre Reinforced Polymer Composites: a Preliminary Numerical Study, Compos. B, 2018, 151, p 256–264.

    Article  CAS  Google Scholar 

  77. M.A. Caminero, J.M. Chacón, I. García-Moreno and G.P. Rodríguez, Impact Damage Resistance of 3D Printed Continuous Fibre Reinforced Thermoplastic Composites Using Fused Deposition Modelling, Compos. B, 2018, 148, p 93–103.

    Article  CAS  Google Scholar 

  78. L. Prabhu, V. Krishnaraj, S. Gokulkumar, S. Sathish and M. Ramesh, Mechanical, Chemical and Acoustical Behavior of Sisal–tea Waste–glass Fiber Reinforced Epoxy Based Hybrid Polymer Composites, Mater Today: Proc., 2019, 16, p 653–660.

    Article  CAS  Google Scholar 

  79. S.M.F. Kabir, K. Mathur, F. Al and M. Seyam, A Critical Review on 3D Printed Continuous Fiber-Reinforced Composites: History, Mechanism, Materials and Properties, Compos. Struct., 2020, 232, p 111476.

    Article  Google Scholar 

  80. N. van de Werken, J. Hurley, P. Khanbolouki, A.N. Sarvestani, A.Y. Tamijani and M. Tehrani, Design Considerations and Modeling of Fiber Reinforced 3D Printed Parts, Compos. B, 2019, 160, p 684–692.

    Article  Google Scholar 

  81. Y. Peng, Y. Wu, K. Wang, G. Gao and S. Ahzi, Synergistic Reinforcement of Polyamide-Based Composites by Combination of Short and Continuous Carbon Fibers via Fused Filament Fabrication, Compos. Struct., 2019, 207, p 232–239.

    Article  Google Scholar 

  82. P. Bettini, G. Alitta, G. Sala and L.D. Landro, Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic, J. Mater. Eng. Perform., 2017, 26, p 843–848.

    Article  CAS  Google Scholar 

  83. B. Akhoundi, A.H. Behravesh and A.B. Saed, Improving Mechanical Properties of Continuous Fiber-Reinforced Thermoplastic Composites Produced by FDM 3D Printer, J. Reinf. Plast. Compos., 2019, 38(3), p 99–116.

    Article  CAS  Google Scholar 

  84. S. Gokulkumar, P.R. Thyla, L. Prabhu and S. Sathish, Measuring Methods of Acoustic Properties and Influence of Physical Parameters on Natural Fibers: A Review, J. Nat. Fiber., 2020, 17, p 1719–1738.

    Article  Google Scholar 

  85. J.F. Rodríguez, J.P. Thomas and J.E. Renaud, Mechanical Behavior of Acrylonitrile Butadiene Styrene (ABS) Fused Deposition Materials. Experimental Investigation, Rap. Prototy. J., 2001, 7, p 148–158.

    Article  Google Scholar 

  86. Z. Hashin and A. Rotem, A Fatigue Failure Criterion for Fiber Reinforced Materials, J. Compos. Mater., 1973, 7, p 448–464.

    Article  Google Scholar 

  87. S. Sathish, K. Kumaresan, L. Prabhu and N. Vigneshkumar, Experimental Investigation on Volume Fraction of Mechanical and Physical Properties of Flax and Bamboo Fibers Reinforced Hybrid Epoxy Composites, Polym. Polym. Compos., 2017, 25, p 229–236.

    CAS  Google Scholar 

  88. M. Mohammadizadeh, A. Imeri, I. Fidan and M. Elkelany, 3D Printed Fiber Reinforced Polymer Composites-Structural Analysis, Composites Part B, 2019, 175, p 107112.

    Article  Google Scholar 

  89. M. Hambach, M. Rutzen, and D. Volkmer, Properties of 3D-printed fiber-reinforced Portland cement paste. In 3D Concrete Printing Technology, pp. 73-113. Butterworth-Heinemann, (2019)

  90. C. Kousiatza, D. Tzetzis and D. Karalekas, In-situ Characterization of 3D Printed Continuous Fiber Reinforced Composites: A Methodological Study Using Fiber Bragg Grating Sensors, Compos. Sci. Technol., 2019, 174, p 134–141.

    Article  CAS  Google Scholar 

  91. M. Heidari-Rarani, M. Rafiee-Afarani and A.M. Zahedi, Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites, Composites Part B, 2019, 175, p 107147.

    Article  CAS  Google Scholar 

  92. X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li and G. Ziegmann, Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites, J. Clean. Prod., 2017, 142, p 1609–1618.

    Article  CAS  Google Scholar 

  93. N. Li, Y. Li and S. Liu, Rapid Prototy** of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing, J. Mater. Process. Technol., 2016, 238, p 218–225.

    Article  CAS  Google Scholar 

  94. A.N. Dickson and D.P. Dowling, Enhancing the Bearing Strength of Woven Carbon Fibre Thermoplastic Composites Through Additive Manufacturing, Compos. Struct., 2019, 212, p 381–388.

    Article  Google Scholar 

  95. H. Dou, Y. Cheng, W. Ye, D. Zhang, J. Li, Z. Miao and S. Rudykh, Effect of Process Parameters on Tensile Mechanical Properties of 3D Printing Continuous Carbon Fiber-Reinforced PLA Composites, Materials, 2020, 13, p 3850.

    Article  CAS  Google Scholar 

  96. H. Li, T. Wang, S. Joshi and Z. Yu, The Quantitative Analysis of Tensile Strength of Additively Manufactured Continuous Carbon Fiber Reinforced Polylactic Acid (PLA), Rap. Prototy. J., 2019, 25, p 1624–1636.

    Article  Google Scholar 

  97. N. Li, G. Link and J. Jelonnek, 3D Microwave Printing Temperature Control of Continuous Carbon Fiber Reinforced Composites, Compos. Sci. Technol., 2020, 187, p 107939.

    Article  CAS  Google Scholar 

  98. L. Yin, X. Tian, Z. Shang, X. Wang and Z. Hou, Characterizations of Continuous Carbon Fiber-Reinforced Composites for Electromagnetic Interference Shielding Fabricated by 3D Printing, Appl. Phys. A., 2019, 125, p 266.

    Article  Google Scholar 

  99. S. Valvez, P. Santos, J.M. Parente, M.P. Silva and P.N.B. Reis, 3D Printed Continuous Carbon Fiber Reinforced PLA Composites: A Short Review, Proc. Struct. Integ., 2020, 25, p 394–399.

    Google Scholar 

  100. J. Zhang, Z. Zhou, F. Zhang, Y. Tan, Y. Tu and B. Yang, Performance of 3D-Printed Continuous-Carbon-Fiber-Reinforced Plastics with Pressure, Materials, 2020, 13, p 471.

    Article  CAS  Google Scholar 

  101. E.A. Papon and A. Haque, Fracture Toughness of Additively Manufactured Carbon Fiber Reinforced Composites, Addit. Manuf., 2019, 26, p 41–52.

    CAS  Google Scholar 

  102. W. Ye, G. Lin, W. Wu, P. Geng, X. Hu, Z. Gao and J. Zhao, Separated 3D Printing of Continuous Carbon Fiber Reinforced Thermoplastic Polyimide, Compos. A, 2019, 121, p 457–464.

    Article  CAS  Google Scholar 

  103. S. Ochi, Mechanical Properties of Kenaf Fibers and Kenaf/PLA Composites, Mech. Mater., 2008, 40, p 446–452.

    Article  Google Scholar 

  104. S.A. Hinchcliffe, K.M. Hess and W.V. Srubar III., Experimental and Theoretical Investigation of Prestressed Natural Fiber-Reinforced Poly-Lactic Acid (PLA) Composite Materials, Compos. B, 2016, 95, p 346–354.

    Article  CAS  Google Scholar 

  105. R.T.L. Ferreira, I.C. Amatte, T.A. Dutra and D. Bürger, Experimental Characterization and Micrography of 3D Printed PLA and PLA Reinforced with Short Carbon Fibers, Compos. B, 2017, 124, p 88–100.

    Article  CAS  Google Scholar 

  106. G.D. Goh, V. Dikshit, A.P. Nagalingam, G.L. Goh, S. Agarwala, S.L. Sing, J. Wei and W.Y. Yeong, Characterization of Mechanical Properties and Fracture Mode of Additively Manufactured Carbon Fiber and Glass Fiber Reinforced Thermoplastics, Mater. Des., 2018, 137, p 79–89.

    Article  CAS  Google Scholar 

  107. P. Parandoush, C. Zhou and D. Lin, 3D Printing of Ultrahigh Strength Continuous Carbon Fiber Composites, Adv. Eng. Mater., 2019, 2(2), p 1800622.

    Article  Google Scholar 

  108. O.A. Mohamed, S.H. Masood and J.L. Bhowmik, Experimental Investigation of Time-Dependent Mechanical Properties of PC-ABS Prototypes Processed by FDM Additive Manufacturing Process, Mater. Lett., 2017, 193, p 58–62.

    Article  CAS  Google Scholar 

  109. A.R. Torrado, C.M. Shemelya, J.D. English, Y. Lin, R.B. Wicker and D.A. Roberson, Characterizing the Effect of Additives to ABS on the Mechanical Property Anisotropy of specimens Fabricated by Material Extrusion 3D Printing, Addit. Manuf., 2015, 6, p 16–29.

    CAS  Google Scholar 

  110. H.R. Dana, F. Barbe, L. Delbreilh, M.B. Azzouna, A. Guillet and T. Breteau, Polymer Additive Manufacturing of ABS Structure: Influence of Printing Direction on Mechanical Properties, J. Manuf. Proces., 2019, 44, p 288–298.

    Article  Google Scholar 

  111. R.E. Petruse, S. Puşcaşu, A. Pascu and I. Bondrea, Key Factors Towards a High-Quality Additive Manufacturing Process with ABS Material, Mater Today: Proc., 2019, 12, p 358–366.

    Article  CAS  Google Scholar 

  112. K.A. Al-Ghamdi, Sustainable FDM Additive Manufacturing of ABS Components with Emphasis on Energy Minimized and Time Efficient Lightweight Construction, Int. J. Lightw. Mater. Manuf., 2019, 2(4), p 338–345.

    Google Scholar 

  113. B.J. Lopes and J.R.M. d’Almeida, Initial Development and characterization of Carbon Fiber Reinforced ABS for Future Additive Manufacturing Applications, Mater Today: Proc., 2019, 8, p 719–730.

    Article  CAS  Google Scholar 

  114. E.R. Cholleti and I. Gibson, ABS Nano Composite Materials in Additive Manufacturing, IOP Conf. Ser. Mater. Sci. Eng., 2018, 455, p 012038.

    Article  Google Scholar 

  115. E. Yasa, and K. Ersoy, Additive Manufacturing of Polymer Matrix Composites. Aircraft Technology, M.C. Kuşhan, Ed., IntechOpen, 2018, p 147–169, https://doi.org/10.5772/intechopen.75628.

  116. N.A. Nguyen, S.H. Barnes, C.C. Bowland, K.M. Meek, K.C. Littrell, J.K. Keum and A.K. Naskar, A Path for Lignin Valorization Via Additive Manufacturing of High-Performance Sustainable Composites with Enhanced 3D Printability, Sci. Adv., 2018, 4(12), p eat4967.

    Article  Google Scholar 

  117. Z. Quan, Z. Larimore, A. Wu, J. Yu, X. Qin, M. Mirotznik, J. Suhr, J.H. Byun, Y. Oh and T.W. Chou, Microstructural Design and Additive Manufacturing and Characterization of 3D Orthogonal Short Carbon Fiber/acrylonitrile-Butadiene-styrene Preform and Composite, Compos. Sci. Technol., 2016, 126, p 139–148.

    Article  CAS  Google Scholar 

  118. T. Hofstätter, D.B. Pedersen, G. Tosello and H.N. Hansen, State-of-the-Art of Fiber-Reinforced Polymers in Additive Manufacturing Technologies, J. Reinf. Plast. Compos., 2017, 36, p 1061–1073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Additive Manufacturing. The issue was organized by Dr. William Frazier, Pilgrim Consulting, LLC; Mr. Rick Russell, NASA; Dr. Yan Lu, NIST; Dr. Brandon D. Ribic, America Makes; and Caroline Vail, NSWC Carderock.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, M., Rajeshkumar, L. & Balaji, D. Influence of Process Parameters on the Properties of Additively Manufactured Fiber-Reinforced Polymer Composite Materials: A Review. J. of Materi Eng and Perform 30, 4792–4807 (2021). https://doi.org/10.1007/s11665-021-05832-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05832-y

Keywords

Navigation