Log in

Review: additive manufacturing of fiber-reinforced composites

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This review paper investigates novel approaches to the fabrication of fiber-reinforced composites (FRCs) via additive manufacturing (AM), with a focus on improving mechanical properties in polymers, metals, and ceramics while reducing weight of the structures. FRCs have been regarded as the optimal material choice across the automobile, aerospace, and construction industries due to their exceptional characteristics, including high strength-to-weight ratio, elevated stiffness, commendable thermal stability, remarkable fatigue and impact resistance, as well as noteworthy chemical and corrosion resistance. AM plays a significant role in FRCs production by offering design flexibility, product customization, waste reduction, near net shape fabrication, cost-effectiveness, and fast prototy**. This paper initially categorizes AM of FRCs into three categories: AM of polymer-matrix, metal-matrix, and ceramic-matrix composites. These categories are further subdivided based on the types of matrix as well as fibers used. Subsequently, it emphasizes the roles of 4D printing and numerical simulation in AMFRCs. The review concludes by addressing potential applications, existing challenges, and scope of AMFRCs in future research and development.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31

Similar content being viewed by others

References

  1. Zhou L, Miller J, Vezza J et al (2024) Additive manufacturing: a comprehensive review. Sensors 24:2668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ivanova O, Williams C, Campbell T (2013) Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyp J 19:353–364

    Article  Google Scholar 

  3. Tyagi B, Dubey D, Sahai A et al (2023) Mechanical properties evaluation of FFF-printed ABS samples based on different process parameters combined with ANOVA and regression analysis. Proc Inst Mech Eng Part C J Mech Eng Sci 237:4256–4270. https://doi.org/10.1177/09544062231151540

    Article  CAS  Google Scholar 

  4. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Article  Google Scholar 

  5. Prabhakar MM, Saravanan AK, Lenin AH et al (2021) A short review on 3D printing methods, process parameters and materials. Mater Today Proc 45:6108–6114

    Article  Google Scholar 

  6. Pérez M, Carou D, Rubio EM et al (2020) Current advances in additive manufacturing. Procedia CIRP 88:439–444

    Article  Google Scholar 

  7. Sharma H, Kumar A, Rana S et al (2023) Critical review on advancements on the fiber-reinforced composites: role of fiber/matrix modification on the performance of the fibrous composites. J Mater Res Technol 26:2975–3002

    Article  CAS  Google Scholar 

  8. Khatkar V, Olhan S, Dubey D et al (2024) Dam** and wear behavior of 3D woven reinforced structural composites for automotive leaf spring applications. Mech Compos Mater 60:295–306. https://doi.org/10.1007/s11029-024-10199-x

    Article  Google Scholar 

  9. Singh O, Behera B (2024) Structural improvement of 3D woven honeycomb composite liner for enhanced energy absorption and impact performance in aircrew helmet. J Compos Mater 58:1619–1640. https://doi.org/10.1177/00219983241246058

    Article  CAS  Google Scholar 

  10. Agnihotri S, Sheikh JN, Singh SP et al (2024) Flame-retardant textile structural composites for construction application: a review. J Mater Sci 59:1788–1818. https://doi.org/10.1007/s10853-023-09312-7

    Article  CAS  Google Scholar 

  11. Yang G, Park M, Park S-J (2019) Recent progresses of fabrication and characterization of fibers-reinforced composites: a review. Compos Commun 14:34–42

    Article  Google Scholar 

  12. Kumar A, Sain T (2024) Phase field-based cohesive zone approach to model delamination in fiber-reinforced polymer composites. Compos Struct 329:117751

    Article  CAS  Google Scholar 

  13. Olhan S, Khatkar V, Behera BK (2023) Novel high-performance textile fibre-reinforced aluminum matrix structural composites fabricated by FSP. Mater Sci Eng B 289:116265

    Article  CAS  Google Scholar 

  14. Olhan S, Antil B, Behera BK (2024) Synergistic effect of different high-performance fibers on the microstructural evolution and mechanical performance of novel hybrid metal matrix composites produced via friction stir processing for automotive applications. Proc Inst Mech Eng Part B J Eng Manuf. https://doi.org/10.1177/09544054241229469

    Article  Google Scholar 

  15. Olhan S, Khatkar V, Behera BK (2019) Mechanical behavior of natural fiber Based 3D woven structural composites for automotive applications. 45 Text Res 65:120

    Google Scholar 

  16. Composites and their properties-Google Books [cited 2022 Jul 18]. https://books.google.co.in/books?hl=en&lr=&id=0AOaDwAAQBAJ&oi=fnd&pg=PA411&ots=JxYggVGA9B&sig=YvWAIJxm-VxoznJheufQKFW8XfM&redir_esc=y#v=onepage&q&f=false

  17. Amateau MF (1998) Ceramic Composites. Handb Compos [cited 2022 Jul 18] p 307–332. https://springer.longhoe.net/chapter/https://doi.org/10.1007/978-1-4615-6389-1_15

  18. Fidan I, Imeri A, Gupta A et al (2019) The trends and challenges of fiber reinforced additive manufacturing. Int J Adv Manuf Technol 102:1801–1818. https://doi.org/10.1007/s00170-018-03269-7

    Article  Google Scholar 

  19. Camburn B, Ismail E, Perez KB, et al (2019) Additive manufacture of fibre-reinforced structures: design process and principles. Vol 4 24th Des Manuf Life Cycle Conf 13th Int Conf Micro-Nanosyst American Society of Mechanical Engineers, California, USA/1069925

  20. Chen Y, Rios CO, Imeri A et al (2020) Investigation of the tensile properties in fibre-reinforced additive manufacturing and fused filament fabrication. Int J Rapid Manuf 9:251

    Article  Google Scholar 

  21. Plocher J, Wioland J-B, Panesar AS (2022) Additive manufacturing with fibre-reinforcement – design guidelines and investigation into the influence of infill patterns. Rapid Prototyp J 28:1241–1259. https://doi.org/10.1108/RPJ-09-2021-0223

    Article  Google Scholar 

  22. Wong J, Altassan A, Rosen DW (2023) Additive manufacturing of fiber-reinforced polymer composites: a technical review and status of design methodologies. Compos Part B Eng 255:110603

    Article  CAS  Google Scholar 

  23. Quan Z, Wu A, Keefe M et al (2015) Additive manufacturing of multi-directional preforms for composites: opportunities and challenges. Mater Today 18:503–512

    Article  CAS  Google Scholar 

  24. Rajeshirke M, Alkunte S, Huseynov O et al (2023) Fatigue analysis of additively manufactured short carbon fiber-reinforced PETG Components. Int J Adv Manuf Technol 128:2377–2394. https://doi.org/10.1007/s00170-023-12107-4

    Article  Google Scholar 

  25. Junk S, Rothe N (2022) Lightweight design of automotive components using generative design with fiber-reinforced additive manufacturing. Procedia CIRP 109:119–124

    Article  Google Scholar 

  26. Ahmed W, Alnajjar F, Zaneldin E et al (2020) Implementing FDM 3D printing strategies using natural fibers to produce biomass composite. Mater (Basel) 13:4065

    Article  CAS  Google Scholar 

  27. Unterweger C, Brüggemann O, Fürst C (2014) Synthetic fibers and thermoplastic short-fiber-reinforced polymers: properties and characterization. Polym Compos 35:227–236. https://doi.org/10.1002/pc.22654

    Article  CAS  Google Scholar 

  28. Continuous carbon fiber-high strength 3D printing material [cited 2023 Jan 16]. https://markforged.com/materials/continuous-fibers/continuous-carbon-fiber

  29. Ivey M, Melenka GW, Carey JP et al (2017) 2017 Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv Manuf Polym Compos Sci. https://doi.org/10.1080/205503401341125

    Article  Google Scholar 

  30. Sun B, Mubarak S, Zhang G et al (2023) Fused-deposition modeling 3D printing of short-cut carbon-fiber-reinforced PA6 composites for strengthening, toughening, and light weighting. Polym (Basel) 15:3722

    Article  CAS  Google Scholar 

  31. Abderrafai Y, Hadi Mahdavi M, Sosa-Rey F et al (2022) Additive manufacturing of short carbon fiber-reinforced polyamide composites by fused filament fabrication: formulation, manufacturing and characterization. Mater Des 214:110358

    Article  CAS  Google Scholar 

  32. Fan C, Shan Z, Zou G et al (2020) Performance of short fiber interlayered reinforcement thermoplastic resin in additive manufacturing. Mater (Basel) 13:2868

    Article  CAS  Google Scholar 

  33. Mkh R, Benal MGM, G. S. PK, et al (2022) Influence of short glass fibre reinforcement on mechanical properties of 3D printed ABS-based polymer composites. Polym (Basel) 14:1182

    Article  Google Scholar 

  34. Yu H, Potter KD, Wisnom MR (2014) A novel manufacturing method for aligned discontinuous fibre composites (high performance-discontinuous fibre method). Compos Part A Appl Sci Manuf 65:175–185

    Article  CAS  Google Scholar 

  35. Hamerton I, HiPerDiF, University of Bristol, UK. https://www.bristol.ac.uk/composites/research/hiperdif/

  36. Longana ML, Yu H, Hamerton I et al (2017) High performance discontinuous fibre (HiPerDiF) technology. Una via sostenibile per una nuova generazione di materiali compositi 46:22–27

    Google Scholar 

  37. Huntley SJ, Rendall T, Longana ML, et al. Modelling of the HiPerDiF method for manufacturing recycled composites using smoothed particle hydrodynamics. 2019 [cited 2024 May 28]; https://research-information.bris.ac.uk/en/publications/modelling-of-the-hiperdif-method-for-manufacturing-recycled-compo

  38. Hecker MD, Longana ML, Eloi J-C et al (2023) Recycling end-of-life sails by carbon fibre reclamation and composite remanufacture using the HiPerDiF fibre alignment technology. Compos Part A Appl Sci Manuf 173:107651

    Article  Google Scholar 

  39. Lobov E, Vindokurov I, Tashkinov M (2024) Mechanical properties and performance of 3D-printed acrylonitrile butadiene styrene reinforced with carbon glass and basalt short fibers. Polym (Basel) 16:1106

    Article  CAS  Google Scholar 

  40. Le T-H, Le V-S, Dang Q-K et al (2021) Microstructure evaluation and thermal-mechanical properties of ABS matrix composite filament reinforced with multi-walled carbon nanotubes by a single screw extruder for FDM 3D printing. Appl Sci 11:8798

    Article  CAS  Google Scholar 

  41. Wang Li, Rao et al (2019) Flexure behaviors of ABS-based composites containing carbon and kevlar fibers by material extrusion 3D printing. Polym (Basel) 11:1878

    Article  CAS  Google Scholar 

  42. Wang P, Zou B, Ding S et al (2020) Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos Part B Eng 198:108175

    Article  CAS  Google Scholar 

  43. Sano Y, Matsuzaki R, Ueda M et al (2018) 3D printing of discontinuous and continuous fibre composites using stereolithography. Addit Manuf 24:521–527

    CAS  Google Scholar 

  44. Dong W, Ma H, Liu R et al (2021) Fabrication by stereolithography of fiber-reinforced fused silica composites with reduced crack and improved mechanical properties. Ceram Int 47:24121–24129

    Article  CAS  Google Scholar 

  45. Zhang S, Li M, Hao N et al (2019) Stereolithography 3D printing of lignin-reinforced composites with enhanced mechanical properties. ACS Omega 4:20197–20204. https://doi.org/10.1021/acsomega.9b02455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagarajan B, Mertiny P, Qureshi AJ (2020) Magnetically loaded polymer composites using stereolithography—material processing and characterization. Mater Today Commun 25:101520

    Article  CAS  Google Scholar 

  47. Sakly A, Kenzari S, Bonina D et al (2014) A novel quasicrystal-resin composite for stereolithography. Mater Des 56:280–285

    Article  CAS  Google Scholar 

  48. Kumar M, Ghosh S, Kumar V et al (2022) Tribo-mechanical and biological characterization of PEGDA/bioceramics composites fabricated using stereolithography. J Manuf Process 77:301–312

    Article  Google Scholar 

  49. Scordo G, Bertana V, Scaltrito L et al (2019) A novel highly electrically conductive composite resin for stereolithography. Mater Today Commun 19:12–17

    Article  CAS  Google Scholar 

  50. Zhang S, Bhagia S, Li M et al (2021) Wood-reinforced composites by stereolithography with the stress whitening behavior. Mater Des 206:109773

    Article  CAS  Google Scholar 

  51. Shinde VV, Celestine A-D, Beckingham LE et al (2020) Stereolithography 3D printing of microcapsule catalyst-based self-healing composites. ACS Appl Polym Mater 2:5048–5057. https://doi.org/10.1021/acsapm.0c00872

    Article  CAS  Google Scholar 

  52. Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly(d, l-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9:5989–5996

    Article  CAS  PubMed  Google Scholar 

  53. Bustillos J, Montero-Zambrano D, Loganathan A et al (2019) Stereolithography-based 3D printed photosensitive polymer/boron nitride nanoplatelets composites. Polym Compos 40:379–388

    Article  CAS  Google Scholar 

  54. Guillaume O, Geven MA, Sprecher CM et al (2017) Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Acta Biomater 54:386–398

    Article  CAS  PubMed  Google Scholar 

  55. Chiulan I, Voicu ŞI, Batalu D (2022) The use of graphene and its derivatives for the development of polymer matrix composites by stereolithographic 3D printing. Appl Sci 12:3521

    Article  CAS  Google Scholar 

  56. Jiang Y, Plog J, Yarin AL et al (2020) Direct ink writing of surface-modified flax elastomer composites. Compos Part B Eng 194:108061

    Article  CAS  Google Scholar 

  57. Guo Y, Liu Y, Liu J et al (2020) Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing. Compos Part A Appl Sci Manuf 135:105903

    Article  CAS  Google Scholar 

  58. Li Y-Y, Li L-T, Li B (2015) Direct ink writing of 3–3 piezoelectric composite. J Alloys Compd 620:125–128

    Article  CAS  Google Scholar 

  59. Cheng M, Ramasubramanian A, Rasul MG et al (2021) Direct ink writing of polymer composite electrolytes with enhanced thermal conductivities. Adv Funct Mater. https://doi.org/10.1002/adfm.202006683

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu C, An C, He Y et al (2018) Direct ink writing of DNTF based composite with high performance. Propellants, Explos Pyrotech 43:754–758. https://doi.org/10.1002/prep.201800075

    Article  CAS  Google Scholar 

  61. Fernandez F, Compel WS, Lewicki JP et al (2019) Optimal design of fiber reinforced composite structures and their direct ink write fabrication. Comput Method Appl Mech Eng 353:277–307

    Article  Google Scholar 

  62. Yang G, Sun Y, Limin qin et al (2021) Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction. Compos Sci Technol 215:109013

    Article  CAS  Google Scholar 

  63. Restrepo JJ, Colorado HA (2020) Additive manufacturing of composites made of epoxy resin with magnetite particles fabricated with the direct ink writing technique. J Compos Mater 54:647–657. https://doi.org/10.1177/0021998319865019

    Article  CAS  Google Scholar 

  64. Liu J, Guo Y, Weng C et al (2020) High thermal conductive epoxy based composites fabricated by multi-material direct ink writing. Compos Part A Appl Sci Manuf 129:105684

    Article  CAS  Google Scholar 

  65. Nawafleh N, Elibol FKE, Aljaghtham M et al (2020) Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing. J Mater Sci 55:11284–11295. https://doi.org/10.1007/s10853-020-04826-w

    Article  CAS  Google Scholar 

  66. Nesaei S, Rock M, Wang Y et al (2017) Additive manufacturing with conductive, viscoelastic polymer composites: direct-ink-writing of electrolytic and anodic poly(ethylene oxide) composites. J Manuf Sci Eng. https://doi.org/10.1115/1.4037238

    Article  Google Scholar 

  67. Chen H, Zhu W, Tang H et al (2021) Oriented structure of short fiber reinforced polymer composites processed by selective laser sintering: the role of powder-spreading process. Int J Mach Tools Manuf 163:103703

    Article  Google Scholar 

  68. Yuan S, Zheng Y, Chua CK et al (2018) Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. Compos Part A Appl Sci Manuf 105:203–213

    Article  CAS  Google Scholar 

  69. Tang H, Chen H, Sun Q et al (2021) Experimental and computational analysis of structure-property relationship in carbon fiber reinforced polymer composites fabricated by selective laser sintering. Compos Part B Eng 204:108499

    Article  CAS  Google Scholar 

  70. Lupone F, Padovano E, Ostrovskaya O et al (2021) Innovative approach to the development of conductive hybrid composites for selective laser sintering. Compos Part A Appl Sci Manuf 147:106429

    Article  CAS  Google Scholar 

  71. Yan C, Hao L, Xu L et al (2011) Preparation, characterisation and processing of carbon fibre/polyamide-12 composites for selective laser sintering. Compos Sci Technol 71:1834–1841

    Article  CAS  Google Scholar 

  72. Zhang Y, Hao L, Savalani MM et al (2009) In vitro biocompatibility of hydroxyapatite-reinforced polymeric composites manufactured by selective laser sintering. J Biomed Mater Res Part A 91A:1018–1027. https://doi.org/10.1002/jbm.a.32298

    Article  CAS  Google Scholar 

  73. Singamneni S, Velu R, Behera MP et al (2019) Selective laser sintering responses of keratin-based bio-polymer composites. Mater Des 183:108087

    Article  CAS  Google Scholar 

  74. Zhang Y, Fang J, Li J et al (2017) The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering. Polym (Basel) 9:728

    Article  Google Scholar 

  75. Zhu W, Yan C, Shi Y et al (2016) A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Sci Rep 6:33780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berti G, D’Angelo L, Gatto A et al (2010) Mechanical characterisation of PA-Al 2 O 3 composites obtained by selective laser sintering. Rapid Prototyp J 16:124–129. https://doi.org/10.1108/13552541011025843/full/html

    Article  Google Scholar 

  77. Jain PK, Pandey PM, Rao PVM (2010) Selective laser sintering of clay-reinforced polyamide. Polym Compos 31:732–743. https://doi.org/10.1002/pc.20854

    Article  CAS  Google Scholar 

  78. Hao L, Savalani MM, Zhang Y et al (2006) Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng Part H J Eng Med 220:521–531. https://doi.org/10.1243/09544119JEIM67

    Article  CAS  Google Scholar 

  79. Yan M, Tian X, Peng G et al (2018) High temperature rheological behavior and sintering kinetics of CF/PEEK composites during selective laser sintering. Compos Sci Technol 165:140–147

    Article  CAS  Google Scholar 

  80. Chacón JM, Caminero MA, Núñez PJ et al (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: effect of process parameters on mechanical properties. Compos Sci Technol 181:107688

    Article  Google Scholar 

  81. Eichenhofer M, Wong JCH, Ermanni P (2017) Continuous lattice fabrication of ultra-lightweight composite structures. Addit Manuf 18:48–57

    Google Scholar 

  82. Caminero MA, Chacón JM, García-Moreno I et al (2018) Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Compos Part B Eng 148:93–103

    Article  CAS  Google Scholar 

  83. Wang Y, Kong D, Zhang Q et al (2021) Process parameters and mechanical properties of continuous glass fiber reinforced composites-polylactic acid by fused deposition modeling. J Reinf Plast Compos 40:686–698. https://doi.org/10.1177/0731684421998017

    Article  CAS  Google Scholar 

  84. Akhoundi B, Nabipour M, Hajami F et al (2020) Calculating filament feed in the fused deposition modeling process to correctly print continuous fiber composites in curved paths. Mater (Basel) 13:4480

    Article  CAS  Google Scholar 

  85. Liu Z, Wang Y, Shi J (2019) Tensile performance of fused deposition modeling PA 6 polymer composites with nanoparticle reinforcement and/or continuous fiber reinforcement. J Micro Nano-Manuf. https://doi.org/10.1115/14044913

    Article  Google Scholar 

  86. Maqsood N, Rimašauskas M (2021) Characterization of carbon fiber reinforced PLA composites manufactured by fused deposition modeling. Compos Part C Open Access 4:100112

    Article  CAS  Google Scholar 

  87. Caminero MA, Chacón JM, García-Moreno I et al (2018) Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Polym Test 68:415–423

    Article  CAS  Google Scholar 

  88. Dubey D, Singh SP, Behera BK (2023) Investigating the influence of fiber orientation on tensile and flexural properties of additively manufactured continuous glass fiber-reinforced nylon composites. Adv Manuf Technol XXXVI. https://doi.org/10.3233/ATDE230929

    Article  Google Scholar 

  89. Dong G, Tang Y, Li D et al (2018) Mechanical properties of continuous kevlar fiber reinforced composites fabricated by fused deposition modeling process. Procedia Manuf 26:774–781

    Article  Google Scholar 

  90. Milenkovic S, Slavkovic V, Fragassa C et al (2021) Effect of the raster orientation on strength of the continuous fiber reinforced PVDF/PLA composites, fabricated by hand-layup and fused deposition modeling. Compos Struct 270:114063

    Article  CAS  Google Scholar 

  91. Pertuz AD, Díaz-Cardona S, González-Estrada OA (2020) Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique. Int J Fatigue 130:105275

    Article  CAS  Google Scholar 

  92. Lu Y, Han XX, Gleadall A et al (2022) Fracture toughness of three-dimensional stereolithography printed polymer reinforced with continuous carbon fibers. 3D Print Addit Manuf 9:278–287. https://doi.org/10.1089/3dp.2020.0310

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mahshid R, Isfahani MN, Heidari-Rarani M et al (2023) Recent advances in development of additively manufactured thermosets and fiber reinforced thermosetting composites: technologies, materials, and mechanical properties. Compos Part A Appl Sci Manuf 171:107584

    Article  CAS  Google Scholar 

  94. Zhang Z, Liu R, Li W et al (2021) Direct writing of continuous carbon fibers/epoxy thermoset composites with high-strength and low energy-consumption. Addit Manuf 47:102348

    CAS  Google Scholar 

  95. Abdullah AM, Ding Y, He X et al (2023) Direct-write 3D printing of UV-curable composites with continuous carbon fiber. J Compos Mater 57:851–863. https://doi.org/10.1177/00219983221127182

    Article  CAS  Google Scholar 

  96. He X, Ding Y, Lei Z et al (2021) 3D printing of continuous fiber-reinforced thermoset composites. Addit Manuf 40:101921

    CAS  Google Scholar 

  97. Baur JW, Abbott AC, Barnett PR et al (2023) Mechanical properties of additively printed, UV cured, continuous fiber unidirectional composites for multifunctional applications. J Compos Mater 57:865–882. https://doi.org/10.1177/00219983221146264

    Article  CAS  Google Scholar 

  98. Mostafaei A, Heidarzadeh A, Brabazon D (2021) Production of metal matrix composites via additive manufacturing. Encycl Mater Compos 2:605–614

    Article  CAS  Google Scholar 

  99. Tang S, Ummethala R, Suryanarayana C et al (2021) Additive manufacturing of aluminum-based metal matrix composites—a review. Adv Eng Mater. https://doi.org/10.1002/adem.202100053

    Article  Google Scholar 

  100. Saboori A, Chen X, Badini C et al (2019) Reactive spontaneous infiltration of Al-activated TiO2 by molten aluminum. Trans Nonferr Met Soc China 29:657–666

    Article  CAS  Google Scholar 

  101. Wu J, Wang XQ, Wang W et al (2016) Microstructure and strength of selectively laser melted AlSi10Mg. Acta Mater 117:311–320

    Article  CAS  Google Scholar 

  102. Gu D, Yang Y, ** L et al (2019) Laser absorption behavior of randomly packed powder-bed during selective laser melting of SiC and TiB2 reinforced Al matrix composites. Opt Laser Technol 119:105600

    Article  Google Scholar 

  103. Dadkhah M, Mosallanejad MH, Iuliano L et al (2021) A comprehensive overview on the latest progress in the additive manufacturing of metal matrix composites: potential, challenges, and feasible solutions. Acta Metall Sin (English Letters) 34:1173–1200. https://doi.org/10.1007/s40195-021-01249-7

    Article  CAS  Google Scholar 

  104. Lei Z, Bi J, Chen Y et al (2019) Effect of energy density on formability, microstructure and micro-hardness of selective laser melted Sc- and Zr- modified 7075 aluminum alloy. Powder Technol 356:594–606

    Article  CAS  Google Scholar 

  105. Gu D, Rao X, Dai D et al (2019) Laser additive manufacturing of carbon nanotubes (CNTs) reinforced aluminum matrix nanocomposites: processing optimization, microstructure evolution and mechanical properties. Addit Manuf 29:100801

    CAS  Google Scholar 

  106. Jue J, Gu D (2017) Selective laser melting additive manufacturing of in situ Al2 Si4O10 /Al composites: microstructural characteristics and mechanical properties. J Compos Mater 51:519–532. https://doi.org/10.1177/0021998316649251

    Article  CAS  Google Scholar 

  107. Attar H, Bönisch M, Calin M et al (2014) Selective laser melting of in situ titanium–titanium boride composites: processing, microstructure and mechanical properties. Acta Mater 76:13–22

    Article  CAS  Google Scholar 

  108. Attar H, Ehtemam-Haghighi S, Kent D et al (2017) Nanoindentation and wear properties of Ti and Ti–TiB composite materials produced by selective laser melting. Mater Sci Eng A 688:20–26

    Article  CAS  Google Scholar 

  109. Li H, Yang Z, Cai D et al (2020) Microstructure evolution and mechanical properties of selective laser melted bulk-form titanium matrix nanocomposites with minor B4C additions. Mater Des 185:108245

    Article  CAS  Google Scholar 

  110. Attar H, Ehtemam-Haghighi S, Kent D et al (2018) Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: a review. Int J Mach Tools Manuf 133:85–102

    Article  Google Scholar 

  111. AlMangour B, Kim Y-K, Grzesiak D et al (2019) Novel TiB2-reinforced 316 L stainless steel nanocomposites with excellent room- and high-temperature yield strength developed by additive manufacturing. Compos Part B Eng 156:51–63

    Article  CAS  Google Scholar 

  112. Wu CL, Zhang S, Zhang CH et al (2019) Effects of SiC content on phase evolution and corrosion behavior of SiC-reinforced 316 L stainless steel matrix composites by laser melting deposition. Opt Laser Technol 115:134–139

    Article  CAS  Google Scholar 

  113. Li X, Zhang CH, Zhang S et al (2019) Design, preparation, microstructure and properties of novel wear-resistant stainless steel-base composites using laser melting deposition. Vacuum 165:139–147

    Article  CAS  Google Scholar 

  114. Sun J, Ye D, Zou J et al (2023) A review on additive manufacturing of ceramic matrix composites. J Mater Sci Technol 138:1–16

    Article  CAS  Google Scholar 

  115. Zheng T, Wang W, Liu L et al (2020) Enhanced superconducting properties and microstructures of YGdBCO7-δ/ LaGdZrO/ YGdBaCuO7-δ film. Ceram Int 46:25424–25429

    Article  CAS  Google Scholar 

  116. Wu H, Liu W, He R et al (2017) Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing. Ceram Int 43:968–972

    Article  CAS  Google Scholar 

  117. Zhang J, Huang D, Liu S et al (2019) Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Mater Sci Eng C 105:110054

    Article  CAS  Google Scholar 

  118. Stanciuc A-M, Sprecher CM, Adrien J et al (2018) Robocast zirconia-toughened alumina scaffolds: Processing, structural characterisation and interaction with human primary osteoblasts. J Eur Ceram Soc 38:845–853

    Article  CAS  Google Scholar 

  119. Hu Y, Ning F, Cong W et al (2018) Ultrasonic vibration-assisted laser engineering net sha** of ZrO2-Al2O3 bulk parts: effects on crack suppression, microstructure, and mechanical properties. Ceram Int 44:2752–2760

    Article  CAS  Google Scholar 

  120. **ao J, Liu D, Cheng H et al (2020) Carbon nanotubes as light absorbers in digital light processing three-dimensional printing of SiCN ceramics from preceramic polysilazane. Ceram Int 46:19393–19400

    Article  CAS  Google Scholar 

  121. Liu C, Ding J (2020) Carbon nanotubes reinforced alumina matrix nanocomposites for conductive ceramics by additive manufacturing. Procedia Manuf 48:763–769

    Article  Google Scholar 

  122. Shuai C, Liu T, Gao C et al (2014) Mechanical reinforcement of diopside bone scaffolds with carbon nanotubes. Int J Mol Sci 15:19319–19329

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu J, Gao C, Feng P et al (2015) A bioactive glass nanocomposite scaffold toughed by multi-wall carbon nanotubes for tissue engineering. J Ceram Soc Japan 123:485–491

    Article  CAS  Google Scholar 

  124. Qi F, Chen N, Wang Q (2018) Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3 /CNT ternary nanocomposites. Mater Des 143:72–80

    Article  CAS  Google Scholar 

  125. Silvestroni L, Sciti D, Melandri C et al (2010) Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions. J Eur Ceram Soc 30:2155–2164

    Article  CAS  Google Scholar 

  126. Lu ZL, Lu F, Cao JW et al (2014) Manufacturing properties of turbine blades of carbon fiber-reinforced SiC composite based on stereolithography. Mater Manuf Process 29:201–209. https://doi.org/10.1080/10426914.2013.872269

    Article  CAS  Google Scholar 

  127. Zhang H, Yang Y, Hu K et al (2020) Stereolithography-based additive manufacturing of lightweight and high-strength Cf/SiC ceramics. Addit Manuf 34:101199

    CAS  Google Scholar 

  128. Guo S (2017) Fiber size effects on mechanical behaviours of SiC fibres-reinforced Ti3AlC2 matrix composites. J Eur Ceram Soc 37:5099–5104

    Article  CAS  Google Scholar 

  129. Baker B, Rubio V, Ramanujam P et al (2019) Development of a slurry injection technique for continuous fibre ultra-high temperature ceramic matrix composites. J Eur Ceram Soc 39:3927–3937

    Article  CAS  Google Scholar 

  130. Klosterman DA, Chartoff RP, Osborne NR et al (1999) Development of a curved layer LOM process for monolithic ceramics and ceramic matrix composites. Rapid Prototyp J 5:61–71. https://doi.org/10.1108/13552549910267362/full/html

    Article  Google Scholar 

  131. Mei H, Yan Y, Feng L et al (2019) First printing of continuous fibers into ceramics. J Am Ceram Soc 102:3244–3255. https://doi.org/10.1111/jace.16234

    Article  CAS  Google Scholar 

  132. Zhao Z, Zhou G, Yang Z et al (2020) Direct ink writing of continuous SiO2 fiber reinforced wave-transparent ceramics. J Adv Ceram 9:403–412. https://doi.org/10.1007/s40145-020-0380-y

    Article  CAS  Google Scholar 

  133. Hoa S, Reddy B, Rosca D (2021) Development of omega stiffeners using 4D printing of composites. Compos Struct 272:114264

    Article  CAS  Google Scholar 

  134. Tian X, Wang Q, Li D (2020) Design of a continuous fiber trajectory for 4D printing of thermally stimulated composite structures. Sci China Technol Sci 63:571–577. https://doi.org/10.1007/s11431-019-1485-5

    Article  Google Scholar 

  135. Hoa SV, Cai X (2020) Twisted composite structures made by 4D printing method. Compos Struct 238:111883

    Article  Google Scholar 

  136. Le Duigou A, Correa D, Ueda M et al (2020) A review of 3D and 4D printing of natural fibre biocomposites. Mater Des 194:108911

    Article  Google Scholar 

  137. Wang Q, Tian X, Huang L et al (2018) Programmable morphing composites with embedded continuous fibers by 4D printing. Mater Des 155:404–413

    Article  Google Scholar 

  138. Ly ST, Kim JY (2017) 4D printing–fused deposition modeling printing with thermal-responsive shape memory polymers. Int J Precis Eng Manuf Technol 4:267–272. https://doi.org/10.1007/s40684-017-0032-z

    Article  Google Scholar 

  139. Lyu Z, Koh JJ, Lim GJH et al (2022) Direct ink writing of programmable functional silicone-based composites for 4D printing applications. Interdiscip Mater 1:507–516. https://doi.org/10.1002/idm2.12027

    Article  Google Scholar 

  140. Garcia Rosales CA, Garcia Duarte MF, Kim H et al (2018) 3D printing of shape memory polymer (SMP)/carbon black (CB) nanocomposites with electro-responsive toughness enhancement. Mater Res Expr 5:065704. https://doi.org/10.1088/2053-1591/aacd53

    Article  CAS  Google Scholar 

  141. Kashyap D, Kishore Kumar P, Kanagaraj S (2018) 4D printed porous radiopaque shape memory polyurethane for endovascular embolization. Addit Manuf 24:687–695

    CAS  Google Scholar 

  142. Grinberg D, Siddique S, Le M et al (2019) 4D Printing based piezoelectric composite for medical applications. J Polym Sci Part B Polym Phys 57:109–115. https://doi.org/10.1002/polb.24763

    Article  CAS  Google Scholar 

  143. Yu Y, Liu H, Qian K et al (2020) Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. Comput Des 122:102817

    Google Scholar 

  144. Ren L, Wang Z, Ren L et al (2023) 4D printing of shape memory composites with remotely controllable local deformation. Mater Today Chem 29:101470

    Article  CAS  Google Scholar 

  145. Shao L-H, Zhao B, Zhang Q et al (2020) 4D printing composite with electrically controlled local deformation. Extrem Mech Lett 39:100793

    Article  Google Scholar 

  146. Zhou Y, Parker CB, Joshi P et al (2021) 4D printing of stretchable supercapacitors via hybrid composite materials. Adv Mater Technol. https://doi.org/10.1002/admt.202001055

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang F, Wang L, Zheng Z et al (2019) Magnetic programming of 4D printed shape memory composite structures. Compos Part A Appl Sci Manuf 125:105571

    Article  CAS  Google Scholar 

  148. Zoumaki M, Mansour MT, Tsongas K et al (2022) Mechanical characterization and finite element analysis of hierarchical sandwich structures with PLA 3D-printed core and composite maize Starch biodegradable skins. J Compos Sci 6:118

    Article  CAS  Google Scholar 

  149. Fu Y, Yao X (2021) Multi-scale analysis for 3D printed continuous fiber reinforced thermoplastic composites. Compos Sci Technol 216:109065

    Article  CAS  Google Scholar 

  150. Wang Z, Smith DE (2021) Finite element modelling of fully-coupled flow/fiber-orientation effects in polymer composite deposition additive manufacturing nozzle-extrudate flow. Compos Part B Eng 219:108811

    Article  CAS  Google Scholar 

  151. Behseresht S, Park YH (2024) Additive manufacturing of composite polymers: thermomechanical FEA and experimental study. Materi (Basel) 17:1912

    Article  CAS  Google Scholar 

  152. Avanzini A, Battini D, Giorleo L (2022) Finite element modelling of 3D printed continuous carbon fiber composites: Embedded elements technique and experimental validation. Compos Struct 292:115631

    Article  CAS  Google Scholar 

  153. Rahman M, Liggett JC, Grella K et al (2022) Validation of a finite element method for simulation of components produced by continuous carbon fiber reinforced additive manufacturing. Int J Comput Method Eng Sci Mech 23:182–192. https://doi.org/10.1080/15502287.2021.1946620

    Article  CAS  Google Scholar 

  154. Malakhov AV, Polilov AN, Zhang J et al (2020) A Modeling method of continuous fiber paths for additive manufacturing (3D Printing) of variable stiffness composite structures. Appl Compos Mater 27:185–208. https://doi.org/10.1007/s10443-020-09804-8

    Article  Google Scholar 

  155. Liu B, Dong B, Li H et al (2024) 3D printing finite element analysis of continuous fiber reinforced composite materials considering printing pressure. Compos Part B Eng 277:111397

    Article  Google Scholar 

  156. Mehboob H, Mehboob A, Abbassi F et al (2022) Finite element analysis of biodegradable Ti/polyglycolic acid composite bone plates based on 3D printing concept. Compos Struct 289:115521

    Article  CAS  Google Scholar 

  157. Ezzaraa I, Ayrilmis N, Abouelmajd M et al (2023) Numerical modeling based on finite element analysis of 3D-printed wood-polylactic acid composites: a comparison with experimental Data. Forests 14:95

    Article  Google Scholar 

  158. Bhandari S, Lopez-Anido RA, Wang L et al (2020) Elasto-plastic finite element modeling of short carbon fiber reinforced 3D printed acrylonitrile butadiene styrene composites. JOM 72:475–484. https://doi.org/10.1007/s11837-019-03895-w

    Article  CAS  Google Scholar 

  159. Dai D, Gu D (2014) Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Des 55:482–491

    Article  CAS  Google Scholar 

  160. Steuben JC, Iliopoulos AP, Michopoulos JG (2016) Discrete element modeling of particle-based additive manufacturing processes. Comput Methods Appl Mech Eng 305:537–561

    Article  Google Scholar 

  161. Tan P, Shen F, Tey WS et al (2021) A numerical study on the packing quality of fibre/polymer composite powder for powder bed fusion additive manufacturing. Virtual Phys Prototyp 16:S1–S18. https://doi.org/10.1080/17452759.2021.1922965

    Article  Google Scholar 

  162. Haeri S, Wang Y, Ghita O et al (2017) Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol 306:45–54

    Article  CAS  Google Scholar 

  163. Gu D, **a M, Dai D (2019) On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting. Int J Mach Tools Manuf 137:67–78

    Article  Google Scholar 

  164. Chen H, Cheng T, Wei Q et al (2021) Dynamics of short fiber/polymer composite particles in paving process of additive manufacturing. Addit Manuf 47:102246

    CAS  Google Scholar 

  165. Yang D, Wu K, Wan L et al (2017) A particle element approach for modelling the 3D printing process of fibre reinforced polymer composites. J Manuf Mater Process 1:10

    CAS  Google Scholar 

  166. Zhang H, Zhang L, Zhang H et al (2021) Fibre bridging and nozzle clogging in 3D printing of discontinuous carbon fibre-reinforced polymer composites: coupled CFD-DEM modelling. Int J Adv Manuf Technol 117:3549–3562. https://doi.org/10.1007/s00170-021-07913-7

    Article  Google Scholar 

  167. Abid N, Mirkhalaf M, Barthelat F (2018) Discrete-element modeling of nacre-like materials: effects of random microstructures on strain localization and mechanical performance. J Mech Phys Sol 112:385–402

    Article  Google Scholar 

  168. Savastano M, Amendola C, D’Ascenzo F, et al. (2016) 3-D Printing in the spare parts supply chain: an Explorative Study in the Automotive Industry. 18 153–170

  169. Introducing the world’s first 3D printed car | Sytner Group [cited 2023 Dec 25]. https://www.sytner.co.uk/news/the-worlds-first-3d-printed-car---local-motors-strati

  170. Prabhu L, Krishnamoorthi S, Joseph J, et al. 2023 Development of advanced 3D printing technology in automotive industry. 020101

  171. NERA: World’s first 3D printed E-Motorcycle-BigRep Industrial 3D Printers [cited 2023 Dec 25]. https://bigrep.com/nera-e-motorbike/

  172. Coolest Dad In The World 3D Prints A Working Lambo Aventador For Son [cited 2023 Dec 25]. https://www.motor1.com/news/375313/dad-3d-prints-lambo-aventador/.

  173. 10 Exciting Examples of 3D Printing in the Automotive Industry in 2021-AMFG [cited 2022 Nov 7]. https://amfg.ai/2019/05/28/7-exciting-examples-of-3d-printing-in-the-automotive-industry/.

  174. Local Motors 3D prints first Olli, autonomous transit vehicle in Knoxville-3D Printing Industry [cited 2023 Dec 25]. https://3dprintingindustry.com/news/local-motors-3d-prints-first-olli-autonomous-transit-vehicle-knoxville-113041/.

  175. Additive manufacturing of aerospace propulsion components-NASA technical reports server (NTRS) [cited 2022 Jul 9]. https://ntrs.nasa.gov/citations/20150023067

  176. Goh GD, Agarwala S, Goh GL et al (2017) Additive manufacturing in unmanned aerial vehicles (UAVs): challenges and potential. Aerosp Sci Technol 63:140–151

    Article  Google Scholar 

  177. LEAP Engines–CFM International Jet Engines CFM International [cited 2022 Nov 9]. https://www.cfmaeroengines.com/engines/leap/

  178. Blakey-Milner B, Gradl P, Snedden G et al (2021) Metal additive manufacturing in aerospace: a review. Mater Des 209:110008

    Article  CAS  Google Scholar 

  179. Wu P, Wang J, Wang X (2016) A critical review of the use of 3-D printing in the construction industry. Autom Constr 68:21–31

    Article  Google Scholar 

  180. Labeaga-Martínez N, Sanjurjo-Rivo M, Díaz-Álvarez J et al (2017) Additive manufacturing for a moon village. Procedia Manuf 13:794–801

    Article  Google Scholar 

  181. 3D Print canal house–DUS Architects [cited 2022 Nov 23]. https://houseofdus.com/project/3d-print-canal-house/.

  182. IIT-M House-Tvasta [cited 2023 Dec 25]. https://www.tvasta.construction/project/iit-m-house/

  183. The Dubai Municipality, Largest 3D-Printed Structure By Apis Cor [cited 2023 Dec 25]. https://parametric-architecture.com/apis-cor-completes-the-dubai-municipality-largest-3d-printed-construction/

  184. Apis Cor announces new affordable 3D printed housing projects-3D Printing Industry [cited 2023 Dec 25]. https://3dprintingindustry.com/news/apis-cor-announces-new-affordable-3d-printed-housing-projects-207906/

  185. Lei D, Yang Y, Liu Z et al (2019) A general strategy of 3D printing thermosets for diverse applications. Mater Horizon 6:394–404

    Article  CAS  Google Scholar 

  186. Tumbleston JR, Shirvanyants D, Ermoshkin N et al (2015) Continuous liquid interface production of 3D objects. Science 347:1349–1352

    Article  CAS  PubMed  Google Scholar 

  187. Li N, Huang S, Zhang G et al (2019) Progress in additive manufacturing on new materials: a review. J Mater Sci Technol 35:242–269

    Article  CAS  Google Scholar 

  188. Bhuvanesh Kumar M, Sathiya P (2021) Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin-Walled Struct 159:107228

    Article  Google Scholar 

  189. Gullipalli C, Thawari N, Burad P et al (2023) Residual stresses and distortions in additive manufactured Inconel 718. Mater Manuf Process 38:1549–1560. https://doi.org/10.1080/10426914.2023.2165663

    Article  CAS  Google Scholar 

  190. Han D, Lee H (2020) Recent advances in multi-material additive manufacturing: methods and applications. Curr Opin Chem Eng 28:158–166

    Article  Google Scholar 

  191. Hasanov S, Alkunte S, Rajeshirke M et al (2021) Review on additive manufacturing of multi-material parts: progress and challenges. J Manuf Mater Process 6:4

    Google Scholar 

  192. Manvatkar V, De A, Debroy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 10(1063/1):4896751

    Google Scholar 

  193. Seepersad CC (2014) Challenges and opportunities in design for additive manufacturing. 3D Print Addit Manuf 1:10–13. https://doi.org/10.1089/3dp.2013.0006

    Article  Google Scholar 

  194. Schmidt M, Merklein M, Bourell D et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66:561–583

    Article  Google Scholar 

  195. Leung Y-S, Kwok T-H, Li X et al (2019) Challenges and status on design and computation for emerging additive manufacturing technologies. J Comput Inf Sci Eng. https://doi.org/10.1115/1.4041913

    Article  Google Scholar 

  196. Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320

    Article  CAS  Google Scholar 

  197. Mühler T, Gomes CM, Heinrich J et al (2015) Slurry-based additive manufacturing of ceramics. Int J Appl Ceram Technol 12:18–25. https://doi.org/10.1111/ijac.12113

    Article  CAS  Google Scholar 

  198. Cooke W, Anne Tomlinson R, Burguete R et al (2011) Anisotropy, homogeneity and ageing in an SLS polymer. Rapid Prototyp J 17:269–279. https://doi.org/10.1108/13552541111138397

    Article  Google Scholar 

  199. Guessasma S, Belhabib S, Nouri H et al (2016) Anisotropic damage inferred to 3D printed polymers using fused deposition modelling and subject to severe compression. Eur Polym J 85:324–340

    Article  CAS  Google Scholar 

  200. He Z, Chen Y, Yang J et al (2017) Fabrication of polydimethylsiloxane films with special surface wettability by 3D printing. Compos Part B Eng 129:58–65

    Article  CAS  Google Scholar 

  201. Oropallo W, Piegl LA (2016) Ten challenges in 3D printing. Eng Comput 32:135–148. https://doi.org/10.1007/s00366-015-0407-0

    Article  Google Scholar 

  202. Coniglio N, Sivarupan T, El Mansori M (2018) Investigation of process parameter effect on anisotropic properties of 3D printed sand molds. Int J Adv Manuf Technol 94:2175–2185. https://doi.org/10.1007/s00170-017-0861-5

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushyant Dubey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, D., Singh, S.P. & Behera, B.K. Review: additive manufacturing of fiber-reinforced composites. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09925-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09925-6

Navigation