Log in

CFD Modeling of Solid Inclusion Motion and Separation from Liquid Steel to Molten Slag

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A model of computational fluid dynamics (CFD) coupled with phase-field and flow-solid interaction (FSI) was built to simulate a solid inclusion’s floating in steel and interacting with the steel-slag interface. The numerical model was validated by a water model experiment. The effects of inclusion size, density and contact angle with the interface on the dynamic process and static position were investigated. The simulation results indicate that floating small size inclusions satisfy Stokes flow while a large size inclusion is with turbulent flow. When approaching the interface, the inclusion will decelerate in advance due to steel film drainage and there will be an acceleration of inclusion once the film ruptures. The static position of inclusion settling at the interface is related to the size, density and contact angle of inclusion, and among all these properties, the contact angle of the steel-slag interface with the inclusion is the dominant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1 B.H. Reis, W.V. Bielefeldt, and A.C.F. Vilela: J. Mater. Res. Technol., 2014, vol. 3, pp. 179–85.

    Article  CAS  Google Scholar 

  2. C. Xuan, E.S. Persson, R. Sevastopolev, and M. Nzotta: Metall. Mater. Trans. B, 2019, vol. 50, pp. 1957–73.

    Article  CAS  Google Scholar 

  3. K. Nakajima and K. Okamura: in Proceedings of the 4th International Conference on Molten Slags and Fluxes, 1992, pp. 505–10.

  4. 4 J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597–606.

    Article  CAS  Google Scholar 

  5. 5 J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838–47.

    Article  CAS  Google Scholar 

  6. 6 M. Valdez, G.S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 450–7.

    Article  CAS  Google Scholar 

  7. 7 G. Shannon, L. White, and S. Sridhar: Mater. Sci. Eng. A, 2008, vol. 495, pp. 310–5.

    Article  Google Scholar 

  8. 8 G.N. Shannon and S. Sridhar: Scand. J. Metall., 2005, vol. 34, pp. 353–62.

    Article  CAS  Google Scholar 

  9. 9 S. Yang, W. Liu, and J. Li: Jom, 2015, vol. 67, pp. 2993–3001.

    Article  Google Scholar 

  10. S. Yang, J. Li, C. Liu, L. Sun, and H. Yang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2453–63.

    Article  CAS  Google Scholar 

  11. C. Liu, S. Yang, J. Li, L. Zhu, and X. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1882–92.

    Article  CAS  Google Scholar 

  12. 12 W. Liu, S. Yang, J. Li, F. Wang, and H. Yang: J. Iron Steel Res. Int., 2019, vol. 26, pp. 1147–53.

    Article  CAS  Google Scholar 

  13. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 361–79.

    Article  CAS  Google Scholar 

  14. Y. Miki, Y. Shimada, B.G. Thomas, and A. Denissov: Iron Steelmak. (I SM), 1997, 24, vol. 24.

  15. Y. Miki and B.G. Thomas: Metall. Mater. Trans. B, 1999, vol. 30, pp. 639–54.

    Article  Google Scholar 

  16. B.G. Thomas and L. Zhang: ISIJ Int., 2001.

  17. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., https://doi.org/10.1007/s11663-006-0021-z.

  18. H. Duan, Y. Ren, and L. Zhang: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., https://doi.org/10.1007/s11663-018-1462-x.

  19. L. Zhang, S. Taniguchi, and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31, pp. 253–66.

    Article  Google Scholar 

  20. 20 C. Xuan, E.S. Persson, J. Jensen, R. Sevastopolev, and M. Nzotta: J. Alloys Compd., 2020, vol. 812, p. 152149.

    Article  CAS  Google Scholar 

  21. 21 J.W. Cahn and J.E. Hilliard: J. Chem. Phys., 1958, vol. 28, pp. 258–67.

    Article  CAS  Google Scholar 

  22. 22 W. Liu, S. Yang, J. Li, and H. Yang: JOM, 2018, vol. 70, pp. 2877–85.

    Article  CAS  Google Scholar 

  23. S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1013–21.

    Article  Google Scholar 

  24. P. Yan, B.A. Webler, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2414–8.

    Article  CAS  Google Scholar 

  25. 25 P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B. Ivanov, and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 155, pp. 420–37.

    Article  CAS  Google Scholar 

  26. B. Coletti, S. Vantilt, B. Blanpain, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34, pp. 533–8.

    Article  Google Scholar 

  27. 27 W. Mu, N. Dogan, and K.S. Coley: Jom, 2018, vol. 70, pp. 1199–209.

    Article  CAS  Google Scholar 

  28. 28 W. Liu, S. Yang, and J. Li: Metall. Mater. Trans. B, 2020, vol. 51, pp. 422–5.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks for the support by the China Postdoctoral Science Foundation (Grant No. 2020M680010), the National Nature Science Foundation of China (Grant Nos. 51734003, 51822401 and 52074030), and the Fundamental Research Funds for the Central Universities (Grant No. FRF-TP-20-008A1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shufeng Yang or **gshe Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 4, 2020; accepted April 23, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Liu, J., Zhao, H. et al. CFD Modeling of Solid Inclusion Motion and Separation from Liquid Steel to Molten Slag. Metall Mater Trans B 52, 2430–2440 (2021). https://doi.org/10.1007/s11663-021-02203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02203-9

Navigation