Log in

Motion and Detachment Behaviors of Liquid Inclusion at Molten Steel–Slag Interfaces

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The fundamental physics of particles adsorbed at the liquid interfaces has numerous applications in a wide field. In the current study, the motion and detachment behaviors of the liquid nonmetallic inclusion from molten steel–slag interfaces were theoretically studied by develo** a force balance model. According to the model calculations, the thin-film drainage is the main stage of the inclusion separation. The capillary force is the main driving force of the inclusion rebounding at the drainage stage. The effect of triple interface among the steel, slag, and inclusion after the film rupture does not seem to be the main factor for the inclusion detachment. The current model can predict the critical inclusion size of the detachment. The vertical terminal velocities of the inclusion, inclusion size, and slag surface tension are the key factors of the detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N. Sinn, M. Alishahi, and S. Hardt: J. Colloid Interface Sci., 2015, vol. 458, pp. 62-68.

    Article  Google Scholar 

  2. H.C.Maru, D. T. Wasan, and R. C. Kintner: Chem. Eng. Sci., 1971, vol. 26, pp. 1615-1628.

    Article  Google Scholar 

  3. M. Preuss and H. J. Butt: J. Colloid Interface Sci., 1998, vol. 208, pp. 468–477.

    Article  Google Scholar 

  4. B. P. Binks and A. T. Tyowua: Soft Matter., 2016, vol. 12, pp. 876–887.

    Article  Google Scholar 

  5. A. M. Tawfeek and A. K. F. Dyab: J. Dispers Sci. Tech., 2014, vol. 35, pp. 265-272.

    Article  Google Scholar 

  6. H. Matsuura, C. Wang, G. Wen and S. Sridhar: ISIJ Int., 2007, vol. 47, pp. 1265-1274.

    Article  Google Scholar 

  7. C. Wang, N.T. Nuhfer and S. Sridhar: Meta. Mater. Trans. B, 2009, vol. 40, pp. 1005-1021.

    Article  Google Scholar 

  8. M. K. Sun, I. H. Jung and H. G. Lee: Metall. Mater. Int., 2008, vol. 14, pp. 791-798.

    Article  Google Scholar 

  9. F. Ruby-Meyer, J. Lehmann and H. Gaye: Scand. J. Metall., 2000, vol 29, pp. 206-212.

    Article  Google Scholar 

  10. A. V. Karasev and H. Suito: ISIJ Int., 2008, vol 48, pp. 1507-1516.

    Article  Google Scholar 

  11. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426–34.

  12. H. Lei, L. Wang, Z. Wu, and J. Fan: ISIJ Int., 2002, vol. 42, pp. 717-725.

    Article  Google Scholar 

  13. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S. T. Johansen: ISIJ Int., 2001, vol. 41, pp.1103-1111.

    Article  Google Scholar 

  14. D. Q. Geng, H. Lei, and J. C. He: ISIJ Int., 2010, vol. 50, pp. 1597-1605.

    Article  Google Scholar 

  15. K. Nakajima and K. Okamura: Proc of 4th Int Conf on Molten Slags and Fluxes, ISIJ, Tokyo, 1992, pp. 505–10.

  16. J. Strandh, K. Nakajima, R. Eriksson and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1597-1606.

    Article  Google Scholar 

  17. J. Strandh, K. Nakajima, R. Eriksson, and P. Jönsson: ISIJ Int., 2005, vol. 45, pp. 1838-1847.

    Article  Google Scholar 

  18. M. Valdez, G. S. Shannon, and S. Sridhar: ISIJ Int., 2006, vol. 4, pp. 450-457.

    Article  Google Scholar 

  19. D. Bouris and G. Bergeles: Meta. Mat. Trans. B, 1998, vol. 29, pp. 641-649.

    Article  Google Scholar 

  20. C. Liu, S. Yang, J. Li, L. Zhu, X. Li: Metall. Mater. Trans. B, 2016, vol. 47, pp. 1882-1892.

    Article  Google Scholar 

  21. S. Yang, J. Li, C. Liu, L. Sun and H. Yang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 2453-2463.

    Article  Google Scholar 

  22. S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 406-410.

    Article  Google Scholar 

  23. [23] M. Valdez, K. Prapakorn and A.W. Cramb and S. Sridhar: Ironmak. Steelmak., 2002, vol. 29, pp. 47-52.

    Article  Google Scholar 

  24. W.D. Cho and P. Fan: ISIJ Int., 2004, vol. 44, pp. 229-234.

    Article  Google Scholar 

  25. W. Z. Mu, N. Dogan, and K. S. Coley: J. Mater. Sci. 2018, vol. 53, pp. 13203-13215.

    Article  Google Scholar 

  26. K.J. Malmberg, H. Shibata, S.Y. Kitamura, P.G. Jönsson, S. Nabeshima, and Y. Kishimoto: J. Mater. Sci., 2010, vol. 45, pp. 2157–64. https://doi.org/10.1007/s10853-009-3982-x.

  27. W. D. Griffiths, Y. Beshay, D. J. Parker, and X. Fan: J. Mater. Sci., 2008, vol. 43, pp. 6853-6856.

    Article  Google Scholar 

  28. C. Xuan, A. V. Karasev, and P. G. Jönsson: ISIJ Int., 2016, vol. 56, pp. 1204-1209.

    Article  Google Scholar 

  29. C. Xuan, A.V. Karasev, P.G. Jönsson, and K. Nakajima: Steel Res. Int., 2016, vol. 88, https://doi.org/10.1002/srin.201600090.

  30. M. Nikolaides: Ph. D thesis, Technische Universität München, 2001, pp. 1-83.

  31. J. Folter, V. Villeneuve, D. Aarts, and H. Lekkerkerker: New J. Phy., 2010, vol. 12, pp. 1-24.

    Google Scholar 

  32. M. Manga and H. A. Stone: J. Fluid Mech., 1995, vol. 287, pp. 279-298.

    Article  Google Scholar 

  33. N. Dietrich, S. Poncin, and H. Z. Li: Exp. Fluids, 2011, vol. 50, pp. 1293-1303.

    Article  Google Scholar 

  34. A. S. Geller, S. H. Lee, and L. G. Leal: J. Fluid Mech., 1986, vol. 169, pp. 27-69.

    Article  Google Scholar 

  35. R. S. Allan, G. E. Charles, and S. G. Mason: J. Colloid Interface Sci., 1961, vol. 16, pp. 150-165.

    Article  Google Scholar 

  36. J. Happel and H. Brenner: Low Reynolds number hydrodynamics. Prentice Hall, New York, 1965.

    Google Scholar 

  37. M. R. Maxey and J. J. Riley: Phys. Fluids, 1983, vol. 26, pp. 883–889.

    Article  Google Scholar 

  38. J. S. Hadamard: C. R. Acad. Sci., 1911, vol. 152, pp. 1735-1738.

    Google Scholar 

  39. W. Rybezynski: Bull Int. Acad. Pol. Sci. Lett. Cl. Sci. Math. Natur. Ser. A, 1911, pp. 40–46.

  40. J. Happel and H. Brenner: Low Reynolds Number Hydrodynamics, 2nd ed. Noordhoff, Leyden, Netherlands, 1973.

    Google Scholar 

  41. C. Tchen: J. Appl. Phys., 1954, vol. 25, pp. 463-473.

    Article  Google Scholar 

  42. D.S. Conochie and D.G. Robertson: A ternary interfacial energy diagram. Gas Injection into Liquid Metals, compiled by A. E. Wraith, University of Newcastle upon Tyne, Newcastle upon Tyne, 1979, pp. C61–4.

  43. W. F. Holbrook and T. L. Joseph: Trans AIME, 1936, vol. 120, pp. 99-117.

    Google Scholar 

  44. W. O. Philbrook and L. D. Kirkbride: Trans AIME, 1956, vol. 206, pp. 351-356.

    Google Scholar 

  45. J. X. Deng and F. Oeters: Steel Res., 1988, vol. 61, pp. 438-448.

    Article  Google Scholar 

  46. P. Pieranski: Phys. Rev. Lett., 1980, vol. 45, pp. 569-572.

    Article  Google Scholar 

  47. www.provac.se.

  48. M. D. Higgins: Am. Mineral., 2000, vol. 85, pp. 1105-1116.

    Article  Google Scholar 

  49. C.J. Xuan and W. Mu: J. Am. Ceram. Soc., 2019 (accepted).

  50. T. Tanaka, T. Kitamura, and I. A. Back: ISIJ Int., 2006, vol. 46, pp. 400-406.

    Article  Google Scholar 

  51. K. C. Mills and B. J. Keene: Int. Mater. Rev., 1987, vol. 32, pp. 1-120.

    Article  Google Scholar 

  52. NIST Molten Salt Database, National Institute of Standards and Technology, 1987.

  53. M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, and M. Hämäläinen: ISIJ Int., 2007, vol. 47, pp. 38-43.

    Article  Google Scholar 

  54. R. D. Shannon: Acta. Crys., 1976, vol. A32, pp. 751-767 doi.org/10.1107/S0567739476001551.

    Article  Google Scholar 

  55. J. P. Hajra, H. K. Lee, and M. G. Frohberg: Z. Metallk., 1991, vol. 82, pp. 603-608.

    Google Scholar 

  56. Y. C. Su, K. C. Mills, and A. Dinsdale: J. Mater. Sci., 2005, vol. 40, pp. 2185-2190.

    Article  Google Scholar 

  57. A.W. Cramb and I. Jimbo: ET Turkdogan Symp ISS, 1994, pp. 195–206.

  58. A. Kasama, A. McLean, W. A. Miller, Z. Morita, and M. J. Ward: Can. Met. Q., 1983, vol. 22, pp. 9-17.

    Article  Google Scholar 

  59. Z. Li, M. Zeze, and K. Mukai: Mater. Trans., 2003, vol. 44, pp. 2108-2113.

    Article  Google Scholar 

  60. Y. Chung and A. W. Cramb: Meta. Mater. Trans. B, 2000, vol. 31, pp. 957-971.

    Article  Google Scholar 

  61. Z. Jun and K. Mukai: ISIJ Int., 1998, vol. 38, pp. 1039-1044.

    Article  Google Scholar 

  62. K. Mukai, Z. S. Li, and M. Zeze: Mater. Trans., 2002, vol. 43, pp. 1724-1731.

    Article  Google Scholar 

  63. J. Lee, K. Yamamoto, and K. Morita: Meta. Mater. Trans. B, 2005, vol. 36, pp. 241-246.

    Article  Google Scholar 

  64. M. Hino and K. Ito: The 19th Committee in Steelmaking, JSPS, Published by Tohoku University Press, Japan, 2010.

  65. The Japan Society for Promotion of Science, The 19th Committee in Steelmaking: Steelmaking Data Sourcebook, Gordon and Breach Science Publishers, New York, 1988.

    Google Scholar 

  66. N. Satoh, T. Taniguchi, S. Mishima, T. Oka, T. Miki, and M. Hino: Tetsu-to-Hagané, 2009, vol. 95, pp. 827-836.

    Article  Google Scholar 

  67. K. H. Do, Y. D. Kim, D. S. Kim, Y. Chung, and J. J. Pak: ISIJ Int., 2015, vol. 55, pp. 934-939.

    Article  Google Scholar 

  68. L. A. Girifalco and R. J. Good: J. Phys. Chem., 1957, vol. 61, pp. 904-909.

    Article  Google Scholar 

  69. T. Tanaka, M. Nakamoto, and J. Lee: Proc. Metal Separation Technology Held Copper Mountain, Junre edited R E Aune and M. Kekkonen publ. Helsinki Univ. Technol., 2004, pp. 135–42.

  70. P. Fredriksson and S. Seetharaman: Ironmaking and steelmaking, 2005, vol. 32, pp. 47-53.

    Article  Google Scholar 

  71. R. F. Brooks, A. P. Day, R. J. L. Andon, L. A. Chapman, K. C. Mills, and P. N. Quested: High Temperatures-High Pressures, 2001, vol. 33, pp. 73-82.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Uddeholms AB for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changji Xuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted November 19, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xuan, C., Persson, E.S., Sevastopolev, R. et al. Motion and Detachment Behaviors of Liquid Inclusion at Molten Steel–Slag Interfaces. Metall Mater Trans B 50, 1957–1973 (2019). https://doi.org/10.1007/s11663-019-01568-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01568-2

Navigation