Log in

Synthesis of high-performance LiMnPO4/C /rGO composite via a mechanical-activation-assisted polyol process

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A mechanical-activation-assisted polyol method for efficient preparation of high-performance rod-like LiMnPO4 composite is developed. The nanosized [Mn3(PO4)2·8H2O + Li3PO4]/graphene oxide (GO) precursors are prepared via a mechano-chemical liquid-phase activation–assisted technique from LiH2PO4 and manganese powder. LiMnPO4/reduced graphene oxide (rGO) samples are obtained by polyol process in boiling triethylene glycol (TEG) and then followed with pyrolytic carbon coating to prepare the LiMnPO4/C/rGo nanocomposite. The characterized results prove that well-crystallized LiMnPO4 nanorods can be successfully synthesized by polyol processing. The LiMnPO4 nanorods have a large percentage of highly oriented (020) facets, which provide a high pore density for Li-ion insertion/extraction. Both rGO modification and further carbon coating significantly improve the conductivity and reduce the charge-transfer resistance. The optimized LiMnPO4/C/rGO composite delivers good electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Zhou F, Cococcioni M, Kang K, Ceder G (2004) The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni. Electrochem Commun 6:1144–1148

    Article  CAS  Google Scholar 

  3. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) Olivine-type cathodes: achievements and problems. J Power Sources 119–121:232–238

    Article  Google Scholar 

  4. Gummow RJ, Sharma N, Peterson VK, He Y (2012) Synthesis, structure, and electrochemical performance of magnesium-substituted lithium manganese orthosilicate cathode materials for lithium-ion batteries. J Power Sources 197:231–237

    Article  CAS  Google Scholar 

  5. **ao J, Chernova NA, Upreti S, Chen X, Li Z, Deng Z, Choi D, Xu W, Nie Z, Graff GL, Liu J, Whittingham MS, Zhang JG (2011) Electrochemical performances of LiMnPO4 synthesized from non-stoichiometric Li/Mn ratio. Phys Chem Chem Phys 13:18099–18106

    Article  CAS  Google Scholar 

  6. Su J, Wei BQ, Rong JP, Yin WY, Ye ZX, Tian XQ, Ren L, Cao MH, Hu CW (2011) A general solution-chemistry route to the synthesis LiMPO4 (M = Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries. J Solid State Chem 184:2909–2919

    Article  CAS  Google Scholar 

  7. Shiratsuchi T, Okada S, Doi T, Yamaki JI (2009) Cathodic performance of LiMn1-xMxPO4 (M = Ti, Mg and Zr) annealed in an inert atmosphere. Electrochim Acta 54:3145–3151

    Article  CAS  Google Scholar 

  8. Li G, Azuma H, Tohda M (2002) LiMnPO4 as the cathode for lithium batteries. Electrochem Solid-State Lett 5:A135–A137

    Article  CAS  Google Scholar 

  9. Martha SK, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I (2009) LiMnPO4 as an advanced cathode material for rechargeable lithium batteries. J Electrochem Soc 156:A541–A552

    Article  CAS  Google Scholar 

  10. Choi D, Wang D, Bae IT, **ao J, Nie Z, Wang W, Viswanathan VV, Lee YJ, Zhang JG, Graff G, Yang Z, Liu J (2010) LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett 10:2799–2805

    Article  CAS  Google Scholar 

  11. Kellerman DG, Chukalkin YG, Medvedeva NI, Kuznetsov MV, Mukhina NA, Semenova AS, Gorshkov VS (2015) Hydrogen reduction of vanadium in vanadium-doped LiMnPO4. Mater Chem Phys 149-150:209–215

    Article  CAS  Google Scholar 

  12. Wang D, Buqa H, Michael C, Deghenghi G, Thierry D, Ivan E, Kwon N, Miners J, Poletto L, Grätzel M (2009) High-performance, nano-structured LiMnPO4 synthesized via a polyol method. J Power Sources 189:624–628

    Article  CAS  Google Scholar 

  13. Choi D, **ao J, Choi YJ, Hardy JS, Vijayakumar M, Bhuvaneswari MS, Liu J, Xu W, Wang W, Yang Z, Graff GL, Zhang J (2011) Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries. Energy Environ Sci 4:4560–4566

    Article  CAS  Google Scholar 

  14. Cao Y, Duan J, Hu G, Jiang F, Peng Z, Du K, Guo H (2013) Synthesis and electrochemical performance of nanostructured LiMnPO4/C composites as lithium-ion battery cathode by a precipitation technique. Electrochim Acta 98:183–189

    Article  CAS  Google Scholar 

  15. Su K, Liu F, Chen J (2013) Preparation of high performance carbon-coated LiMnPO4 nanocomposite by an acetate-assisted antisolvent precipitation method. J Power Sources 232:234–239

    Article  CAS  Google Scholar 

  16. Wu L, Lu J, Wei G, Wang P, Ding H, Zheng J, Li X, Zhong S (2014) Synthesis and electrochemical properties ofxLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium–ion batteries. Electrochim Acta 146:288–294

    Article  CAS  Google Scholar 

  17. Chen J, Wang S, Whittingham MS (2007) Hydrothermal synthesis of cathode materials. J Power Sources 174:442–448

    Article  CAS  Google Scholar 

  18. Dokko K, Hachida T, Watanabe M (2011) LiMnPO4 nanoparticles prepared through the reaction between Li3PO4 and molten aqua-complex of MnSO4. J Electrochem Soc 158:A1275–A1281

    Article  CAS  Google Scholar 

  19. Wang H, Yang Y, Liang Y, Cui L, Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50:1–6

    Article  Google Scholar 

  20. Barpanda P, Djellab K, Recham N, Armand M, Tarascon JM (2011) Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries. J Mater Chem 21:10143–10152

    Article  CAS  Google Scholar 

  21. Wu L, Zhong S, Lu J, Liu J, Lv F (2013) Synthesis of Cr-doped LiMnPO4/C cathode materials by sol–gel combined ball milling method and its electrochemical properties. Ionics 19:1061–1065

    Article  CAS  Google Scholar 

  22. Zhao Y, Peng L, Liu B, Yu G (2014) Single-crystalline LiFePO4 nanosheets for high-rate Li-ion batteries. Nano Lett 14:2849–2853

    Article  CAS  Google Scholar 

  23. Zhang Y, Zhao Y (2011) Enhanced electrochemical properties of LiMnPO4/C via Li-site substitution with Mg. Ionics 17:457–461

    Article  CAS  Google Scholar 

  24. Ferrari S, Lavall RL, Capsoni D, Quartarone E, Magistris A, Mustarelli P, Canton P, Quartarone MA, Mustarelli P, Canton P (2010) Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J Phys Chem C 114:12598

    Article  CAS  Google Scholar 

  25. Qin Z, Zhou X, **a Y, Tang C, Liu Z (2012) Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. J Mater Chem 22:21144–21150

    Article  CAS  Google Scholar 

  26. Wang K, Wang Y, Wang C, **a Y (2014) Graphene oxide assisted solvothermal synthesis of LiMnPO4 naonplates cathode materials for lithium ion batteries. Electrochim Acta 146:8–14

    Article  CAS  Google Scholar 

  27. Zheng J, Ni L, Lu Y, Qin C, Liu P, Wu T, Tang Y, Chen Y (2015) High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction. J Power Sources 282:444–451

    Article  CAS  Google Scholar 

  28. Liu J, Liu X, Huang T, Yu A (2013) Synthesis of nano-sized LiMnPO4 and in situ carbon coating using a solvothermal method. J Power Sources 229:203–209

    Article  CAS  Google Scholar 

  29. Duan J, Cao Y, Jiang J, Du K, Peng Z, Hu G (2014) Novel efficient synthesis of nanosized carbon coated LiMnPO4 composite for lithium ion batteries and its electrochemical performance. J Power Sources 268:146–152

    Article  CAS  Google Scholar 

  30. Duan J, Hu G, Cao Y, Du K, Peng Z (2015) Synthesis of high performance Fe-Mg co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics. doi:10.1007/s11581-015-1582-0

    Google Scholar 

  31. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  32. Wu K, Hu G, Du K, Peng Z, Cao Y (2015) Improved electrochemical properties of LiFePO4/graphene/carbon composite synthesized from FePO4·2H2O/graphene oxide. Ceram Int 41:13867–13871

    Article  CAS  Google Scholar 

  33. Chen C, Liu GB, Wang Y, Li JL, Liu H (2013) Preparation and electrochemical properties of LiFePO4/C nanocomposite using FePO4·2H2O nanoparticles by introduction of Fe3(PO4)2·8H2O at low cost. Electrochim Acta 113:464–469

    Article  CAS  Google Scholar 

  34. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253–A257

    Article  CAS  Google Scholar 

  35. Gao Y, Li L, Peng H, Wei Z (2014) Surfactant-assisted sol–gel synthesis of nanostructured ruthenium-doped lithium iron phosphate as a cathode for lithium-ion batteries. Chem Electro Chem 1:2146–2152

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of Hunan province (Grant No.2015JJ3152), Fundamental Research Funds for the Central Universities (2012QNZT018), and China Postdoctoral Science Foundation (2012 M521546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J., Hu, G., Cao, Y. et al. Synthesis of high-performance LiMnPO4/C /rGO composite via a mechanical-activation-assisted polyol process. Ionics 22, 1541–1549 (2016). https://doi.org/10.1007/s11581-016-1682-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1682-5

Keywords

Navigation