Log in

Synthesis and characterization of LiMn0.8Fe0.2PO4/rGO/C for lithium-ion batteries via in-situ coating of Mn0.8Fe0.2C2O4·2H2O precursor with graphene oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

LiMn0.8Fe0.2PO4 is a potential candidate cathode material to balance the energy density, safety, and cost of power lithium ion batteries. However, the low electronic conductivity and ion diffusion coefficient limit its application. Here, bimetallic oxalate Mn0.8Fe0.2C2O4·2H2O/graphene oxide (Mn0.8Fe0.2C2O4·2H2O/GO) is designed to synthesize homogeneously distributed LiMn0.8Fe0.2PO4/reduced graphene oxide/carbon (LiMn0.8Fe0.2PO4/rGO/C) composite. The influence of rGO on the morphologies, structure, and electrochemical performance of the as-synthesized composite is investigated. The composite LiMn0.8Fe0.2PO4/rGO/C delivers discharge capacity of 153.2 mAh g−1 at 0.05 C and 127.3 mAh g−1 at 5 C, and 97.2% capacity retention even after 300 cycles at 1 C. The results confirm that the introduction of rGO sheets can alleviate the agglomeration of LiMn0.8Fe0.2PO4 particles. Furthermore, the conductive network composed of rGO sheets and pyrolytic organic carbon links the particles together to improve the migration pathways of electrons and lithium ions, thus enhancing the electrochemical performance of LiMn0.8Fe0.2PO4/rGO/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    PubMed  CAS  Google Scholar 

  2. Li W, Song B, Manthiram A (2017) High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev 46(10):3006–3059

    PubMed  CAS  Google Scholar 

  3. Li J, Ma ZF (2019) Past and present of LiFePO4: from fundamental research to industrial applications. Chem 5(1):3–6

    CAS  Google Scholar 

  4. Liang L, Sun X, Zhang J, Hou L, Sun J, Liu Y, Wang S, Yuan C (2019) In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries. Adv Energy Mater 9(11):1802847

    Google Scholar 

  5. Yang WC, Bi YJ, Yang BC, Wang DY, Shi SQ (2014) Preparation and electrochemical characterization of Nano-LiMnPO4. Acta Phys -Chim Sin 30:460–466

    CAS  Google Scholar 

  6. Shi SQ, Gao J, Liu Y, Zhao Y, Wu Q, Ju WW, Ouyang CY, **ao RJ (2016) Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin Phys B 25(1):018212

    Google Scholar 

  7. Deng Y, Yang C, Zou K, Qin X, Zhao Z, Chen G (2017) Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5 ≤ y < 1.0) cathode materials for high energy density lithium ion batteries. Adv Energy Mater 7 1601958

  8. Yang CC, Hung YW, Lue SJ (2016) Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process. J Power Sources 325:565–574

    CAS  Google Scholar 

  9. Li Y, Xu G, Fan S, Ma J, Shi X, Long Z, Deng W, Fan W, Yang S (2020) Synthesis of carbon-coated LiMn0.8Fe0.2PO4 materials via an aqueous rheological phase-assisted solid-state method. J Solid State Electrochem 24(4):821–828

    CAS  Google Scholar 

  10. Wang Y, Wu CY, Yang H, Duh JG (2018) Rational design of a synthetic strategy, carburizing approach and pore-forming pattern to unlock the cycle reversibility and rate capability of micro-agglomerated LiMn0.8Fe0.2PO4 cathode materials. J Mater Chem A 6(22):10395–10403

    CAS  Google Scholar 

  11. Zhuang H, Bao Y, Nie Y, Qian Y, Deng Y, Chen G (2019) Synergistic effect of composite carbon source and simple pre-calcining process on significantly enhanced electrochemical performance of porous LiFe0.5Mn0.5PO4/C agglomerations. Electrochim Acta 314:102–114

    CAS  Google Scholar 

  12. Yang L, **a Y, Fan X, Qin L, Qiu B, Liu Z (2016) Constructing durable carbon layer on LiMn0.8Fe0.2PO4 with superior long-term cycling performance for lithium-ion battery. Electrochim Acta 191:200–206

    CAS  Google Scholar 

  13. Huang YP, Tao T, Chen Z, Han W, Wu Y, Kuang C, Zhou S, Chen Y (2014) Excellent electrochemical performance of LiFe0.4Mn0.6PO4 microspheres produced using a double carbon coating process. J Mater Chem A 2(44):18831–18837

    CAS  Google Scholar 

  14. Hong J, Wang F, Wang X, Graetz J (2011) LiFexMn1-xPO4: a cathode for lithium-ion batteries. J Power Sources 196(7):3659–3663

    CAS  Google Scholar 

  15. Li BZ, Wang Y, Xue L, Li XP, Li WS (2013) Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J Power Sources 232:12–16

    CAS  Google Scholar 

  16. Liu L, Chen G, Du B, Cui Y, Ke X, Liu J, Guo Z, Shi Z, Zhang H, Chou S (2017) Nano-sized cathode material LiMn0.5Fe0.5PO4/C synthesized via improved sol-gel routine and its magnetic and electrochemical properties. Electrochim Acta 255:205–211

    CAS  Google Scholar 

  17. Kim JK, Vijaya R, Zhu L, Kim Y (2015) Improving electrochemical properties of porous iron substituted lithium manganese phosphate in additive addition electrolyte. J Power Sources 275:106–110

    CAS  Google Scholar 

  18. Wen F, Lv T, Gao P, Wu B, Liang Q, Zhang Y, Shu H, Yang X, Liu L, Wang X (2018) Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries. Electrochim Acta 276:134–141

    CAS  Google Scholar 

  19. Yan SY, Wang CY, Gu RM, Li MW (2015) Enhanced kinetic behaviors of LiMn0.5Fe0.5PO4/C cathode material by Fe substitution and carbon coating. J Solid State Electrochem 19(10):2943–2950

    CAS  Google Scholar 

  20. Song Y, Liu Y, Ou X (2020) Heat-rate-controlled hydrothermal crystallization of high-performance LiMn0.7Fe0.3PO4 cathode material for lithium-ion batteries. Ceram Int 46(4):5069–5076

    CAS  Google Scholar 

  21. Zuo P, Cheng G, Wang L, Ma Y, Du C, Cheng X, Wang Z, Yin G (2013) Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:872–879

    CAS  Google Scholar 

  22. Yang W, Bi Y, Qin Y, Liu Y, Zhang X, Yang B, Wu Q, Wang D, Shi S (2015) LiMn0.8Fe0.2PO4/C cathode material synthesized via co-precipitation method with superior high-rate and low-temperature performances for lithium-ion batteries. J Power Sources 275:785–791

    CAS  Google Scholar 

  23. Lei Z, Wang J, Yang J, Nuli Y, Ma Z (2018) Nano/micro-hierarchical-structured LiMn0.85Fe0.15PO4 cathode material for advanced lithium ion battery. ACS Appl Mater Interfaces 10(50):43552–43560

    PubMed  CAS  Google Scholar 

  24. Yang L, **a Y, Qin L, Yuan G, Qiu B, Shi J, Liu Z (2016) Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery. J Power Sources 304:293–300

    CAS  Google Scholar 

  25. Zhou X, **e Y, Deng Y, Qin X, Chen G (2015) The enhanced rate performance of LiFe0.5Mn0.5PO4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating. J Mater Chem A 3(3):996–1004

    CAS  Google Scholar 

  26. Zhou X, Deng Y, Wan L, Qin X, Chen G (2014) A surfactant-assisted synthesis route for scalable preparation of high performance of LiFe0.15Mn0.85PO4/C cathode using bimetallic precursor. J Power Sources 265:223–230

    CAS  Google Scholar 

  27. Yang X, Liu D, Xu X, He X, **e J (2013) Mechanism and kinetic studies on the synthesis of LiFePO4 via solid-state reactions. Crystengcomm 15(48):10648–10656

    CAS  Google Scholar 

  28. Sun YK, Oh SM, Park HK, Scrosati B (2011) Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries. Adv Mater 23(43):5050–5054

    PubMed  CAS  Google Scholar 

  29. Oh SM, Myung ST, Park JB, Scrosati B, Amine K, Sun YK (2012) Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew Chem Int Ed 51(8):1853–1856

    CAS  Google Scholar 

  30. Wang H, Yang Y, Liang Y, Cui LF, Casalongue HS, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50(32):7364–7368

    CAS  Google Scholar 

  31. Wu K, Hu G, Peng Z, Cao Y, Du K (2016) In situ green synthesis of MnFe2O4/reduced graphene oxide nanocomposite and its usage for fabricating high-performance LiMn1/3Fe2/3PO4/reduced graphene oxide/carbon cathode material for Li-ion batteries. Electrochim Acta 196:252–260

    CAS  Google Scholar 

  32. Du K, Zhang LH, Cao YB, Peng ZD, Hu GR (2012) Synthesis of LiMn0.8Fe0.2PO4/C by co-precipitation method and its electrochemical performances as a cathode material for lithium-ion batteries. Mater Chem Phys 136(2-3):925–929

    CAS  Google Scholar 

  33. Liu W, Gao P, Mi Y, Chen J, Zhou H, Zhang X (2013) Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries. J Mater Chem A 1(7):2411–2417

    CAS  Google Scholar 

  34. Tan Z, Wang X, Zhou H (2013) Highly energy density olivine cathode material synthesized by coprecipitation technique. Electrochim Acta 90:597–603

    CAS  Google Scholar 

  35. Yang X, Mi Y, Zhang W, Wu B, Zhou H (2015) Enhanced electrochemical performance of LiFe0.6Mn0.4PO4/C cathode material prepared by ferrocene-assisted calcination process. J Power Sources 275:823–830

    CAS  Google Scholar 

  36. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217

    CAS  Google Scholar 

  37. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48(45):8559–8563

    CAS  Google Scholar 

  38. **ng Y, He YB, Li B, Chu X, Chen H, Ma J, Du H, Kang F (2013) LiFePO4/C composite with 3D carbon conductive network for rechargeable lithium ion batteries. Electrochim Acta 109:512–518

    CAS  Google Scholar 

  39. Su FY, You C, He YB, Lv W, Cui W, ** F, Li B, Yang QH, Kang F (2010) Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem 20(43):9644–9650

    CAS  Google Scholar 

  40. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    PubMed  CAS  Google Scholar 

  41. Hou YK, Pan GL, Sun YY, Gao XP (2018) LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS Appl Mater Interfaces 10(19):16500–16510

    PubMed  CAS  Google Scholar 

  42. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    PubMed  CAS  Google Scholar 

  43. Churikov AV, Ivanishchev AV, Ushakov AV, Gamayunova IM, Leenson IA (2013) Thermodynamics of LiFePO4 solid-phase synthesis using iron(II) oxalate and ammonium dihydrophosphate as precursors. J Chem Eng Data 58(6):1747–1759

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51874358, 51602352, and 51772333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanbing Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Wang, Y., Du, K. et al. Synthesis and characterization of LiMn0.8Fe0.2PO4/rGO/C for lithium-ion batteries via in-situ coating of Mn0.8Fe0.2C2O4·2H2O precursor with graphene oxide. J Solid State Electrochem 24, 2441–2450 (2020). https://doi.org/10.1007/s10008-020-04774-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04774-0

Keywords

Navigation