Log in

Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In cyanobacteria, the interactions among pigment–protein complexes are modified in response to changes in light conditions. In the present study, we analyzed excitation energy transfer from the phycobilisome and photosystem II to photosystem I in the cyanobacterium Arthrospira (Spirulina) platensis. The cells were grown under lights with different spectral profiles and under different light intensities, and the energy-transfer characteristics were evaluated using steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopy techniques. The fluorescence rise and decay curves were analyzed by global analysis to obtain fluorescence decay-associated spectra. The direct energy transfer from the phycobilisome to photosystem I and energy transfer from photosystem II to photosystem I were modified depending on the light quality, light quantity, and cultivation period. However, the total amount of energy transferred to photosystem I remained constant under the different growth conditions. We discuss the differences in energy-transfer processes under different cultivation and light conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Car:

Carotenoid

Chl:

Chlorophyll

FDAS:

Fluorescence decay-associated spectrum (spectra)

LED:

Light-emitting diodes

PBS:

Phycobilisome

PS:

Photosystem

TRFS:

Time-resolved fluorescence spectrum (spectra)

References

  • Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215

    Article  PubMed  CAS  Google Scholar 

  • Akimoto S, Yokono M, Hamada F, Teshigahara A, Aikawa S, Kondo A (2012) Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim Biophys Acta 1817:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Bennett A, Bogorad L (1973) Complementary chromatic adaptation in a filamentous blue–green alga. J Cell Biol 58:419–435

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK, Thome SW, Anderson JM (1966) Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc Natl Acad Sci USA 56:586–593

    Article  PubMed  CAS  Google Scholar 

  • Boussiba S, Richmond AE (1979) Isolation and characterization of phycocyanins from the blue–green alga Spirulina platensis. Arch Microbiol 120:155–159

    Article  CAS  Google Scholar 

  • Bruce D, Biggins J, Steiner T, Thewalt M (1985) Mechanism of the light state transition in photosynthesis. IV. Picosecond fluorescence spectroscopy of Anacystis nidulans and Porphyridium crentum in state 1 and state 2 at 77 K. Biochim Biophys Acta 806:237–246

    Article  CAS  Google Scholar 

  • Butler WL, Kitajima M (1975) Energy transfer between photosystem I and photosystem II in chloroplasts. Biochim Biophys Acta 396:72–85

    Article  PubMed  CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Ann Rev Plant Physiol 32:327–347

    Article  CAS  Google Scholar 

  • Ghosh AK, Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys J 6:611–619

    Article  PubMed  CAS  Google Scholar 

  • Goedheer JC (1972) Fluorescence in relation to photosynthesis. Ann Rev Plant Physiol 23:87–112

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 1–42

    Chapter  Google Scholar 

  • Liu LN, Bryan SJ, Huang F, Yu J, Nixon PJ, Rich PR, Mullineaux CW (2012) Control of electron transport routes through redox-regulated redistribution of respiratory complexes. Proc Natl Acad Sci USA 109:11431–11436

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Kikuchi (2003) Antenna systems and energy transfer in Cyanophyta and Rhodophyta. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 281–306

    Chapter  Google Scholar 

  • Mimuro M, Yamazaki I, Tamai N, Katoh T (1989) Excitation energy transfer in phycobilisomes at −196°C isolated from the cyanobacterium Anabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim Biophys Acta 973:153–162

    Article  CAS  Google Scholar 

  • Mimuro M, Akimoto S, Tomo T, Yokono M, Miyashita H, Tsuchiya T (2007) Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim Biophys Acta 1767:327–334

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Yokono M, Akimoto S (2010) Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem Photobiol 86:62–69

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux CW (1992) Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim Biophys Acta 110:285–292

    Google Scholar 

  • Mullineaux CW, Allen JF (1990) State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynth Res 23:297–311

    Article  CAS  Google Scholar 

  • Nakayama K, Yamaoka T, Katoh S (1979) Chromatographic separation of photosystems I and II from the thylakoid membrane isolated from a thermophilic blue-green alga. Plant Cell Physiol 20:1565–1576

    CAS  Google Scholar 

  • Ogawa T, Terui G (1970) Studies on the growth of Spirulina platensis. (I) On the pure culture of Spirulina platensis. J Ferment Technol 48:361–367

    Google Scholar 

  • Shubin VV, Murthy SDS, Karapetyan NV, Mohanty P (1991) Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1060:28–36

    Article  CAS  Google Scholar 

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV (1992) Isolation from Spirulina membranes of two photosystem I-type complexes one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Lett 309:340–342

    Article  PubMed  CAS  Google Scholar 

  • Stowe-Evans EL, Kehoe DM (2004) Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes. Photochem Photobiol Sci 3:495–502

    Article  PubMed  CAS  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T, Mimuro M (2008) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta 1777:55–65

    Article  PubMed  CAS  Google Scholar 

  • Yokono M, Murakami A, Akimoto S (2011) Excitation energy transfer between photosystem II and photosystem I in red algae: larger amounts of phycobilisome enhance spillover. Biochim Biophys Acta 1807:847–853

    Article  PubMed  CAS  Google Scholar 

  • Yokono M, Tomo T, Nagao R, Ito H, Tanaka A, Akimoto S (2012) Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim Biophys Acta 1817:754–759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. F. Hamada and Ms. A. Teshigahara for their help in measurements and analyses at the early stage of this study. This work was partly supported by a Grant-in-Aid for Scientific Research from JSPS (Nos. 22370017 and 23370013) to SA and a Grant-in-Aid for JSPS Fellows (No. 21A72944) to MY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akimoto, S., Yokono, M., Aikawa, S. et al. Modification of energy-transfer processes in the cyanobacterium, Arthrospira platensis, to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth Res 117, 235–243 (2013). https://doi.org/10.1007/s11120-013-9830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9830-5

Keywords

Navigation