Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta

  • Chapter
Light-Harvesting Antennas in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 13))

Summary

The molecular architecture and energy transfer processes in the phycobilin-chlorophyll antenna systems of Cyanophyta, Glaucophyta, Rhodophyta and Cryptophyta are discussed with an emphasis on the molecular structures of the individual phycobiliprotein building blocks. The assembly of phycobilisomes from phycobiliproteins is explained, from the binding of chromophores to the individual apoproteins to the binding of phycobilisomes to thylakoid membranes. Structure-function relationships in phycobiliproteins are discussed in the light of the crystal structures and a normal-mode analysis. The normal-mode analysis helps to clarify aspects of the protein structure that are critical for determining the optical properties of phycobiliproteins. A gradient of energy levels in phycobilisomes is realized by binding of specific linker polypeptides to common building blocks. Energy-transfer processes are clearly shown by the time-resolved fluorescence spectra of intact cells and isolated phycobilisomes. The rate of energy transfer between weakly interacting chromophores can be described by the Forster mechanism, and the predictions agree well with the experimental results. Evolution of phycobiliproteins seems to have increased both the number of chromophores per unit monomer and the range of energy levels in the complex, so as to capture an increasing fraction of the available solar energy. Further analyses on the basis of crystal structures should lead to an improved understanding of how interactions of the chromophores with the protein maximize the efficiency of light capture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

APC:

allophycocyanin

Chl:

chlorophyll

PC:

phycocyanin

PCB:

phycocyanobilin

PE:

phycoerythrin

PEB:

phycoerythrobilin

PEC:

phycoerythrocyanin

PUB:

phycourobilin

PVB:

Phycoviolobilin

RC:

reaction center

x-PC and x-PE:

forms of phycocyanin and phycoerythrin with different chromophore compositions

References

  • Adir N, Dobrovetsky E and Lerner N (2001) Structure of C- phycocyanin from the thermophilic cyanobacterium Synecho-coccus vulcanus at 2.5 Ã…: Structural implications for thermal stability in phycobilisome assembly. J Mol Biol 313: 71–81

    Google Scholar 

  • Adir N, Vainer R and Lerner N (2002) Refined structure of c-phycocyanin from the cyaonobacterium Synechococcus vulcanus at 1.6 Ã…: Insights into the role of solvent molecules in thermal stability and cofactor strructure. Biochim Biophys Acta 1556: 168–174.

    Google Scholar 

  • Apt KE, Collier JL and Grossman AR (1995) Evolution of the phycobiliproteins. J Mol Biol 248: 79–96

    Article  PubMed  CAS  Google Scholar 

  • Arnold WA (1991) Experiments. Photosynth Res 27: 73–82

    Article  Google Scholar 

  • Beale SI (1994) Biosynthesis of cyanobacterial tetrapyrrole pigments: Hemes, chlorophylls and phycobilins. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp. 139–216. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43–73

    Article  CAS  Google Scholar 

  • Brejc K, Ficner R, Huber R and Steinbacher S (1995) Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 Ã… resolution. J Mol Biol 249: 424–440

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Wilczok T and Waclawek R (1988) Indications for photoreversible reactions in the range of phycochrome b absorption obtained by automated microscopic image-analysis of germinating Anabaena akinetes. Cytobios 216: 39–48

    Google Scholar 

  • Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: Properties and occurrence in cyanobacteria. J Gen Microbiol 128: 835–844

    CAS  Google Scholar 

  • Chang WR, Jiang T, Wan ZL, Zhang JP, Yang ZX and Liang DC (1996) Crystal structure of R-phycoerythrin from Polysiphonia urceolata at 2.8 Ã… resolution. J Mol Biol 262: 721–731

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, Cole WJ and Siegelman HW (1967) Chromophores of allophycocyanin and R-phycocyanin. Biochem J 105: 903–905

    PubMed  CAS  Google Scholar 

  • Contreras-Martel C, Marinez-Oyanedel J, Bunster M, Legrand P, Piras C, Vernede X and Fontecilla-Camps JC (2001) Crystallization and 2.2 Ã… resolution structure of R-phycoerythrin from Gracilaria chilensis: A case of perfect hemihedral twinning. Acta Crystallogr D 57: 52–60

    Google Scholar 

  • de Lorimier R, Guglielmi G, Bryant DA and Stevens SE Jr (1990) Structure and mutation of a gene encoding a 33000- molecular weight phycocyanin-associated linker polypeptide. Arch Microbiol 153: 541–549

    Article  PubMed  Google Scholar 

  • Dexter DL (1953) A theory of sensitized luminescence in solids. JChem Phys 21: 836–850

    CAS  Google Scholar 

  • Dolganov NAM, Bhaya D and Grossman AR (1995) Cyano-bacterial protein with similarity to the chlorophyll alb binding proteins of higher plants: Evolution and regulation. Proc Natl Acad Sei USA 92, 636–640

    Google Scholar 

  • Ducret A, Sidler W, Frank G and Zuber H (1994) Complete amino acid sequence of R-phycocyanin I a-and /3-subunits from the red alga Porphyridium cruentum. Eur J Biochem 221: 563–580

    Article  PubMed  CAS  Google Scholar 

  • Düring M, Huber R, Bode W, Rumbeli R and Zuber H (1990) Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus at 2.7 Ã…. J Mol Biol 211: 633–644

    Article  Google Scholar 

  • Düring M, Schmidt GB and Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Ã… resolution. J Mol Biol 217: 577–592

    Article  Google Scholar 

  • Ficner R and Huber R (1993) Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the y subunit. Eur J Biochem 218: 103–106

    Article  PubMed  CAS  Google Scholar 

  • Ficner R, Lobeck K, Schmidt G and Huber R (1992) Isolation, crystallization, crystal structure analysis and refinement of B- phycoerythrin from the red alga Porphyridium sordidum at 2.2 Ã… resolution. J Mol Biol 228: 935–950

    Article  PubMed  CAS  Google Scholar 

  • Förstendorf H, Parbel A, Scheer H and Siebert F (1997) Z, E isomerization of the a-84 phycoviolobilin chromophore of phycoerythrocyanin from Mastigocladus laminosus investigated by Fourier-transform infrared difference spectroscopy. FEBS Lett 402: 173–176

    Article  Google Scholar 

  • Förster Th (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Physik Leipzig 2: 55–75

    Article  Google Scholar 

  • Frank G, Sidler W, Widmer H and Zuber H (1978) The complete amino-acid sequence of both subunits of C-phycocyanin from the cyanobacterium Mastigocladus laminosus. Hoppe-Seyler’s Z Physiol Chem 359: 1491–1507

    Article  PubMed  CAS  Google Scholar 

  • Fuglistaller P, Suter F and Zuber H (1983) The complete amino-acid sequence of both subunits of phycoerythrocyanin from the thermophilic cyanobacterium Mastigocladus laminosus. Hoppe Seyler’s Z Physiol Chem 364: 691–712

    Article  PubMed  CAS  Google Scholar 

  • Fuglistaller P, Rumbeli R, Suter F and Zuber H (1984) Minor polypeptides from the phycobilisome of the cyanobacterium Mastigocladus laminosus. Isolation, characterization and amino-acid sequences of a colorless 8.9 kDa polypeptide and of a 16.2 kDa phycobiliprotein. Hoppe-Seyler’s Z Physiol Chemie 365: 1085–1096

    Article  Google Scholar 

  • Fuglistaller P, Mimuro M and Zuber H (1987) Allophycocyanin complexes of the phycobilisome from Mastigocladus laminosus influence of the linker polypeptide L9 on the spectral properties of the phycobiliprotein subunits. Biol Chem Hoppe-Seyler 368: 353–367

    Article  PubMed  CAS  Google Scholar 

  • Gantt E (1980) Structure and function of phycobilisomes: Light-harvesting pigment complexes in red and blue-green algae. Int Rev Cytol 66: 45–80

    Article  CAS  Google Scholar 

  • Gantt E and Conti SF (1966) Granules associated with the chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29: 423–434

    Article  PubMed  CAS  Google Scholar 

  • Gantt E, Edwards MR and Conti SF (1968) Ultrastructure of Porphyridium aerugineum, a blue-green colored Rhodophyta. J Phycol 4: 65–71

    Article  Google Scholar 

  • Gantt E, Lipschults C A and Zilinskas B A (1976) Further evidence for a phycobilisome model from selective dissociation, fluorescence emission, immunoprecipitation and electron microscope. Biochim Biophys Acta 430: 375–388

    Article  PubMed  CAS  Google Scholar 

  • Giddings TH Jr, Wasmann C and Staehelin LA (1983) Structure of the thylakoids and envelope membranes of the cyanella of Cyanophora paradoxa. Plant Physiol 71: 409–419

    Article  PubMed  CAS  Google Scholar 

  • Gillbro T, Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fischer R and Scheer H (1993) Forster energy transfer between neighboring chromophores in C-phycocyanin trimers. Biochim Biophys Acta 1140: 321–326

    Article  CAS  Google Scholar 

  • Glauser M, Sidler W and Zuber H (1993) Isolation, characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complexes from the phycobilisomes of Mastigocladus laminosus. Photochem Photobiol 57: 344–351

    Article  CAS  Google Scholar 

  • Glazer AN (1985) Light harvesting by phycobilisomes. Annu Rev Biophys Chem 14: 47–77

    Article  CAS  Google Scholar 

  • Glazer AN and Wedemayer GJ (1995) Cryptomonad biliproteinsan evolutionary perspective. Photosynth Res 46: 93–105

    Article  CAS  Google Scholar 

  • Go M (1981) Correlation of DNA exonic regions with protein structural units in hemoglobin. Nature 291: 90–92

    Article  PubMed  CAS  Google Scholar 

  • Go M (1983) Modular structural units, exons, and function in chicken lysozyme. Proc Natl Acad Sci USA 80: 1964–1968

    Article  PubMed  CAS  Google Scholar 

  • Green BR and Dunford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Mol Biol 47: 685–714

    Article  CAS  Google Scholar 

  • Grossman AR, Schaefer MR, Chaing GG and Collier JL (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiol Rev 57: 725–749

    PubMed  CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol, 129: 181–189

    Article  CAS  Google Scholar 

  • Hardison R (1999) Hemoglobin from bacteria to man: evolution of different patterns of gene expression. J Exp Biol 201: 1099–1117

    Google Scholar 

  • Haug A, Jaquet DD, Beall HC (1972) Light emission from the Scenedesmus obliquus wild type, mutant 8, and mutant II strains, measured under steady-state conditions between 4 nanoseconds and 20 seconds. Biochim Biophys Acta 283: 9299

    Google Scholar 

  • Herzberg O, Chen CCH, Kapadia G, McGuire M, Carroll LJ, Noh SJ and Dunaway-Mariano D (1996) Swiveling-domain mechanism for enzymatic phosphotransfer between remote reaction sites. Proc Natl Acad Sci USA 93: 2652–2657

    Article  PubMed  CAS  Google Scholar 

  • Hucke M, Schweitzer G, Holzwarth AR, Sidler W and Zuber H (1993) Studies on chromophore coupling in isolated phycobiliproteins IV Femtosecond transient absorption study of ultrafast excited state dynamics in trimeric phycoerythro-cyanin complexes. Photochem Photobiol, 57: 76–80

    Article  CAS  Google Scholar 

  • Jiang T, Zhang JP and Liang D (1999) Structure and function of chromophores in R-phycoerythrin at 1.9 A resolution. Proteins Struc Func Genet 34: 224–231

    Article  CAS  Google Scholar 

  • Jiang T, Zhang JP, Chang WR and Liang DC (2001) Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome. Biophys J 81: 1171–1179

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and KrauB N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Sugimoto T and Mimuro M (1997) An electronic state of the chromophore, phycocyanobilin, and its interaction with the protein moiety in C-phycocyanin: Protonation of the chromophore. Chem Phys Lett 274: 460–465

    Google Scholar 

  • Kikuchi H, Wako H, Yura K, Go M and Mimuro M (2000) Significance of a two-domain structure in subunits of phycobiliproteins revealed by the normal mode analysis. Biophys J 79: 1587–1600

    Article  PubMed  CAS  Google Scholar 

  • Klukas O, Schubert WD, Jordan P, KrauB N, Fromme P, Tobias H and Saenger W (1999a) Photosystem I, an improved model of the stromal subunits PsaC, PsaD ad PsaE. J Biol Chem 274: 7351–7360

    Google Scholar 

  • Klukas O, Schubert WD, Jordan P, KrauB N, Fromme P, Tobias H and Saenger W (1999b) Localization of two phylloquinones, Qk and Qk, in an improved electron density amp of Photosystem I at 4 A resolution. J Biol Chem 274, 7361–7367

    Article  PubMed  CAS  Google Scholar 

  • KrauB N, Schubert WD, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nature, Struct Biol 3: 965–973

    Google Scholar 

  • La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD and Green BR (1996) Independent evolution of the Prochlorophyte and green plant chlorophyll a/b light harvesting proteins. Proc Natl Acad Sci USA 93: 15244–15248

    Article  PubMed  Google Scholar 

  • Ley AC and Butler WL (1977) The distribution of excitation energy between photosystem I and II in Porphyridium cruentum. In: Miyachi S, Katoh S, Fujita Y and Shibata K (eds), Photosynthetic Organelles, pp. 33–46. Japanese Society of Plant Physiologists, Tokyo

    Google Scholar 

  • Liu JY, Jiang T, Zhang JP and Liang DC (1999) Crystal structure of allophycocyanin from red algae Porphyrayezoensis at 2.2- A resolution. J Biol Chem 274: 16945–16952

    Article  PubMed  CAS  Google Scholar 

  • MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 24: 311–34

    Article  Google Scholar 

  • MacColl R, Malak H, Gryczynski I, Eisele LE, Mizcjewski GJ, Franklin E, Sheikh H, Montellese D, Hopkins S and MacColl LC (1998) Phycoerythrin 545: Monomers energy migration bilin topography and monomer/dimer equilibrium. Biochem 37: 417–423

    Google Scholar 

  • Mimuro M (1990) Studies on excitation energy flow in the photosynthetic pigment system; Structure and energy transfer mechanism. Bot Mag Tokyo 103: 233–253

    Article  CAS  Google Scholar 

  • Mimuro M and Fujita Y (1977) Estimation of chlorophyll a distribution in the photosynthetic pigments systems I and II of the blue-green alga Anabaena variabilis. Biochim Biophys Acta 459: 376–389

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Fuglistaller P, Riimbeli R and Zuber H (1986a). Functional assignment of chromophores and energy transfer in C phycocyanin isolated from the thermophilic cyanobacterium Mastigocladus laminosus. Biochim Biophys Acta 848: 155–166

    Article  CAS  Google Scholar 

  • Mimuro M, Lipschultz CA and Gantt E (1986b) Energy flow in the phycobilisome core ofNostoc sp (MAC): Two independent terminal pigments. Biochim Biophys Acta 852: 126–132

    Google Scholar 

  • Mimuro M, Yamazaki I, Tamai N and Katoh T (1989) Excitation energy transfer in phycobilisomes at -196 °C isolated from the cyanobacterium Anabaena variabilis (M-3): evidence forplural transfer pathways to the terminal emitter. Biochim Biophys Acta 973: 153–162

    Article  CAS  Google Scholar 

  • Mimuro M, Tamai N, Murakami A, Watanabe M, Erata M, Watanabe M, Tokutomi M and Yamazaki I (1998) Multiple pathways of the excitation energy flow in the photosynthetic pigment system of a cryptophyta, Cryoptomonas sp. (CR-1). Phycological Res 46, 155–164

    Article  CAS  Google Scholar 

  • Mimuro M, Kikuchi H and Murakami A (1999) Structure and function of phycobilisomes. In Singhal GS, Renger G, Sopory SK, Irrgang KD and Govindjee (eds) Concepts in Photobiology: Photosynthesis and Photomorphogenesis, pp. 104–135, Kluwer Academic Publishing, Dordrecht

    Chapter  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi M (1996) Chlorophyll d as major pigment. Nature 383: 402

    Article  CAS  Google Scholar 

  • Mullineaux CW (1994) Excitation energy transfer from phycobilisomes to Photosystem I in a cyanobacterial mutant lacking photosystem II. Biochim Biophys Acta 1184: 71–77

    Article  CAS  Google Scholar 

  • Mullineaux CW, Tobin MJ and Jones GR (1997) Mobility of photosynthetic complexes in thylakoid membranes. Nature 390: 421–424

    Article  CAS  Google Scholar 

  • Murakami A, Mimuro A, Ohki K and Fujita Y (1981) Absorption spectrum of allophycocyanin isolated from Anabaena cylindrica: Variation of the absorption spectra induced by changes in the physico-chemical environment. J Biochem 89: 79–86

    Google Scholar 

  • Murata N and Satoh K (1986) Absorption and fluorescence emissions by intact cells, chloroplasts and chlorophyll-proteins complexes. In: Amesz J, Govindjee and Fork D C (eds), Light Emission by Plants and Bacteria, pp, 137–159. Academic Press, New York

    Google Scholar 

  • Padyana AK, Bhat VB, Madyastha KM, Rajashankar DR and Ramakumar S (2001) Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochem Biophys Res Comm 282: 892–898

    Article  Google Scholar 

  • Partensky F, Hess WR and Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol Mol Biol Rev 63: 106–127

    PubMed  CAS  Google Scholar 

  • Pilot TJ and Fox JL (1984) Cloning and sequencing of the genes encoding the alpha and beta subunits of C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. Proc Natl Acad Sci USA 81: 6983–6987

    Article  PubMed  CAS  Google Scholar 

  • Pizarro SA and Sauer K (2001) Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker polypeptides. Photochem Photobiol 73: 556–563

    Article  PubMed  CAS  Google Scholar 

  • Redlinger T and Gantt E (1982) A Mr 95,000 polypeptide in Porphyridium cruentum phycobilisomes and thylakoids: Possible function in linkage of phycobilisomes to thylakoids and in energy transfer. Proc Natl Acad Sci USA 79: 5542–5546

    Article  PubMed  CAS  Google Scholar 

  • Reuter W, Wiegand G, Huber R and Than ME (1999) Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci USA 96: 1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Rhee KH, Morris EP, Barber J and Kiihlbrandt W (1998) Three-dimensional structure of the plant Photosystem II reaction center at 8A resolution. Nature 396: 283–286

    Article  PubMed  CAS  Google Scholar 

  • Ritter S, Hiller RG, Wrench PM, Welte W and Diederichs K (1999) Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J Struct Biol 126: 86–97

    Article  PubMed  CAS  Google Scholar 

  • Riimbeli R, Schirmer T, Bode W, Sidler W and Zuber H (1985) Crystallization of phycoerythrocyanin from the cyanobacterium Mastigocladus laminosus and preliminary characterization of two crystal forms. J Mol Biol 186: 197–200

    Article  Google Scholar 

  • Sauer K and Scheer H (1988) Excitation transfer in C-phycocyanin Forster transfer rate and exciton calculation based on new crystal structure from Agmenellum quadruplicatum and Mastigocladus laminosus. Biochim Biophys Acta 936: 157–170

    Article  CAS  Google Scholar 

  • Scheer H (1981) Biliprotein. Angew Chem 93: 230–250

    Article  CAS  Google Scholar 

  • Schirmer T, Bode W, Huber R, Sidler W and Zuber H (1985) X- ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol 184: 257–277

    Article  PubMed  CAS  Google Scholar 

  • Schirmer T, Huber R, Schneider M, Bode W, Miller M and Hackert ML (1986) Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol 188: 651–676

    Google Scholar 

  • Schirmer T, Bode W and Huber R (1987) Refined three dimensional structures of two cyanobacterial C phycocyanins at 2.1 and 2.5 A resolution. A common principle of phycobilin-protein interaction. J Mol Biol 196: 677–695

    Google Scholar 

  • Schneider S, Prenzel CJ, Brehm G, Gottschalk L, Zhao KH and Scheer H (1995) Resonance-enhanced cars spectroscopy of biliproteins. Influence of aggregation and linker proteins on chromophore structure in allophycocyanin ( Mastigocladus laminosus ). Photochem Photobiol 62: 847–854

    Google Scholar 

  • Sharkov AV, Kryukov IV, Khoroshilov EV, Kryukov PG, Fisher R, Scheer H and Gillbro T (1992) Femtosecond energy transfer between chromophores in allophycocyanin trimers. Chem Phys Lett 191: 633–638

    Article  CAS  Google Scholar 

  • Sidler W (1994) Phycobilisomes and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139–216. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  • Sidler W, Gysi J, Isker E and Zuber H (1981) The complete amino acid sequence of both subunits of allophycocyanin: A light harvesting protein-pigment complex from the cyanobacterium Mastigocladus laminosus. Hoppe-Seyler’s Z Physiol Chem 362: 611–628

    Google Scholar 

  • Sidler W, KumpfB, Rudiger W and Zuber H (1986) The complete amino-acid sequence of C-phycoerythrin from the cyanobacterium Fremyella diplosiphon. Bio Chem Hoppe-Seyler 367: 627–642

    CAS  Google Scholar 

  • Sidler W, KumpfB, Suter F, Klotz AV, Glazer AN and Zuber H (1989) The complete amino-acid sequence of the a and /3 subunits of B-phycoerythrin from the rhodophytan alga Porphyridium cruentum. Bio Chem Hoppe-Seyler 370: 115124

    Google Scholar 

  • Stec B, Troxler RF and Teeter MM (1999) Crystal structure of C- Phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J 76: 2912–2921

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV, Ong LJ, Wilbanks SM and Glazer AN (1991) Phycoerythrins of marine unicellular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. J Biol Chem 266: 9528–9534

    Google Scholar 

  • Wakabayashi S, Matsubara H and Webster DA (1986) Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481–483

    Article  PubMed  CAS  Google Scholar 

  • Wang XQ, Li LN, Chang WR, Zhang JP, Gui LL, Guo BJ and Liang DC (2001) Structure of C-phycocyanin from Spirulina platensis at 2.2 A resolution: A novel monoclinic crystal form for phycobiliproteins in phycobilisomes. Acta Crystallogr D 57: 784–792

    Google Scholar 

  • Wedemayer GJ, Kidd DG and Glazer AN (1996) Cryptomonad biliproteins: Bilin types and locations. Photosynth Res 48: 163–170

    Google Scholar 

  • Wilk E, Harrop SJ, Jankova L, Edler D, Keenan G, Sharpies F, Hiller RG and Curmi MG (1999) Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-A resolution. Proc Natl Acad Sci USA 96: 8901–8906

    Article  PubMed  CAS  Google Scholar 

  • Wolfe GR, Cunningham FX Jr, Dunford D, Green BR and Gantt E (1994) Evidence for a common origin of chloroplasts with light-harvesting complexes of different pigmentation. Nature 367: 566–568

    Article  CAS  Google Scholar 

  • Yamazaki I, Mimuro M, Mura, T, Yamazaki T, Yoshihara K and Fuj ita Y (1984) Excitation energy transfer in the light harvesting antenna system of the red alga Porphyridium cruentum and the blue-green alga Anacystis nidulans: Analysis of time-resolved fluorescence spectra. Photochem Photobiol 39: 233–240

    Google Scholar 

  • Zhao J, Zhou J and Bryant DA (1992) Energy transfer processes in phycobilisomes as deduced from analyses of mutants of Synechococcus PCC 7002. In: Murata N (ed), Research in Photosynthesis, Vol I, pp 25–32. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Zhao KH, Haessner R, Cmiel E and Scheer H (1995a) Type-I reversible photochemistry of phycoerythrocyanin involves Z/ is-isomerization of a-84 phycoviolobilin chromophore. Biochim Biophys Acta 1228: 235–243

    Article  Google Scholar 

  • Zhao KH and Scheer H (1995b) Type-I and type-II reversible photochemistry of phycoerythrocyanin a-subunit from Mastigocladus laminosus both involve Z, E isomerization of phycoviolobilinchromophore and are controlled by sulfhydryls in apoprotein. Biochim Biophys Acta 1228: 244–253

    Article  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Kraufi N, Saenger W and Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mimuro, M., Kikuchi, H. (2003). Antenna Systems and Energy Transfer in Cyanophyta and Rhodophyta. In: Green, B.R., Parson, W.W. (eds) Light-Harvesting Antennas in Photosynthesis. Advances in Photosynthesis and Respiration, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2087-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2087-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5468-5

  • Online ISBN: 978-94-017-2087-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation