How Light-Harvesting and Energy-Transfer Processes Are Modified Under Different Light Conditions: STUDIES by Time-Resolved Fluorescence Spectroscopy

  • Chapter
  • First Online:
Photosynthesis: Structures, Mechanisms, and Applications

Summary

Photosynthetic organisms contain specific pigment-protein complexes that absorb light energy and subsequently transfer excitation energy to the photosynthetic reaction centers. Changing the quality and/or quantity of the complexes is how light-harvesting and energy-transfer processes adapt to environments. Cyanobacteria and red algae form a unique peripheral membrane complex, phycobilisome, whereas integral membrane complexes containing specific carotenoids are found in green algae and higher plants. We examine light-harvesting and energy-transfer processes in different types of complexes by time-resolved fluorescence spectroscopy. Changes in these processes in response to different environments are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aikawa, S.; Izumi, Y.; Matsuda, F.; Hasunuma, T.; Chang, J. S.; Kondo, A. Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour. Technol., 2012, 108, 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto, S.; Mimuro, M. Application of time-resolved polarization fluorescence spectroscopy in the femtosecond range to photosynthetic systems. Photochem. Photobiol., 2007, 83, 163–170.

    CAS  PubMed  Google Scholar 

  • Akimoto, S.; Yokono, M.; Hamada, F.; Teshigahara, A.; Aikawa, S; Kondo, A. Adaptation of light-harvesting systems of Arthrospira platensis to light conditions, probed by time-resolved fluorescence spectroscopy. Biochim. Biophys. Acta Bioenerg., 2012, 1817, 1483–1489.

    Google Scholar 

  • Akimoto, S.; Yamazaki, I.; Takaichi, S.; Mimuro, M. Excitation relaxation dynamics of linear carotenoids. J. Lumin., 2000, 87–89, 797–799.

    Article  Google Scholar 

  • Akimoto, S.; Yamazaki, I.; Murakami, A.; Takaichi, S.; Mimuro, M. Ultrafast excitation relaxation dynamics and energy transfer in the siphonaxanthin-containing green alga Codium fragile. Chem. Phys. Lett., 2004, 390, 45–49.

    Article  CAS  Google Scholar 

  • Akimoto, S.; Yokono, M.; Ohmae, M.; Yamazaki, I.; Tanaka, A.; Higuchi, M.; Tsuchiya, T.; Miyashita, H.; Mimuro, M. Ultrafast excitation relaxation dynamics of lutein in solution and in the light-harvesting complexes II isolated from Arabidopsis thaliana. J. Phys. Chem. B, 2005, 109, 12612–12619.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto, S.; Tomo, T.; Naitoh, Y.; Otomo, A.; Murakami, A.; Mimuro, M. Identification of a new excited state responsible for the in vivo absorption band of siphonaxanthin in the green alga Codium fragile. J. Phys. Chem. B, 2007, 111, 9179–9181.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto, S.; Yokono, M.; Higuchi, M.; Tomo, T.; Takaichi, S.; Murakami, A.; Mimuro, M. Solvent effects on excitation relaxation dynamics of a keto-carotenoid, siphonaxanthin. Photochem. Photobiol. Sci., 2008, 7, 1206–1209.

    Article  CAS  PubMed  Google Scholar 

  • Akimoto, S.; Yokono, M.; Aikawa, S.; Kondo, A. Modification of energy transfer processes in the cyanobacterium Arthrospira platensis to adapt to light conditions, probed by time-resolved fluorescence spectroscopy. Photosynth. Res., 2013, 117, 235–243.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, J. M.; Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci., 1988, 13, 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Apt, K. E.; Collier, J. L.; Grossman, A. R. Evolution of the phycobiliproteins. J. Mol. Biol., 1995, 248, 79–96.

    Article  CAS  PubMed  Google Scholar 

  • Arteni, A. A.; Liu, L.-N.; Aartsma, T. J.; Zhang, Y.-Z.; Zhou, B.-C.; Boekema, E. J. Structure and organization of phycobilisomes on membranes of the red alga Porphyridium cruentum. Photosynth. Res., 2008, 95, 169–174.

    Article  CAS  PubMed  Google Scholar 

  • Arteni, A. A.; Ajlani, G.; Boekema, E. J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochim. Biophys. Acta Bioenerg., 2009, 1787, 272–279.

    Google Scholar 

  • Ben-Shem, A.; Frolow, F.; Nelson, N. Crystal structure of plant photosystem I. Nature, 2003, 426, 630–635.

    Article  CAS  PubMed  Google Scholar 

  • Bernát, G.; Schreiber, U.; Sendtko, E.; Stadnichuk, I. N.; Rexroth, S.; Rögner, M.; Koenig F. Unique properties vs. common themes: the atypical cyanobacterium Gloeobacter violaceus PCC 7421 is capable of state transitions and blue-light-induced fluorescence quenching. Plant Cell Physiol., 2012, 53, 528–542.

    Article  PubMed  Google Scholar 

  • Blankenship, R. E. Molecular mechanisms of photosynthesis, Blackwell Publishing: Oxford, 2002.

    Book  Google Scholar 

  • Boardman, N. K.; Thome S. W.; Anderson J. M. Fluorescence properties of particles obtained by digitonin fragmentation of spinach chloroplasts. Proc. Natl. Acad. Sci. USA, 1966, 56, 586–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boussiba S.; Richmond, A. E. Isolation and characterization of phycocyanins from the blue-green alga Spirulina platensis. Arch. Microbiol., 1979, 120, 155–159.

    Article  CAS  Google Scholar 

  • Bruce, D.; Biggins, J.; Steiner, T.; Thewalt, M. Mechanism of the light state transition in photosynthesis. IV. Picosecond fluorescence spectroscopy of Anacystis nidulans and Porphyridium crentum in state 1 and state 2 at 77 K. Biochim. Biophys. Acta Bioenerg., 1985, 806, 237–246.

    Article  CAS  Google Scholar 

  • Butler, W. L.; Kitajima, M. Energy transfer between photosystem I and photosystem II in chloroplasts. Biochim. Biophys. Acta Bioenerg., 1975, 396, 72–85.

    Article  CAS  Google Scholar 

  • Chen, M.; Floetenmeyer, M.; Bibby, T. Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Lett., 2009, 583, 2535–2539.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, Y. C.; Ahn, T. K.; Avenson, T. J.; Zigmantas, D.; Niyogi, K. K.; Ballottari, M.; Bassi, R.; Fleming, G. R. Kinetic modeling of charge-transfer quenching in the CP29 minor complex. J. Chem. Phys. B, 2008, 112, 13418–13423.

    Article  CAS  Google Scholar 

  • Cunningham Jr, F.; Dennenberg, R.; Jursinic, P.; Gantt, E. Growth under red light enhances photosystem II relative to photosystem I and phycobilisomes in the red alga Porphyridium cruentum. Plant Physiol., 1990, 93, 888–985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans, J. The dependence of quantum yield on wavelength and growth irradiance. Funct. Plant Biol., 1987, 14, 69–79.

    Google Scholar 

  • Falkowski, P. G.; Katz, M. E.; Knoll, A. H.; Quigg, A.; Raven, J. A.; Schofield, O.; Taylor, F. J. R. The evolution of modern eukaryotic phytoplankton. Science, 2004, 305, 354–360.

    Article  CAS  PubMed  Google Scholar 

  • Förster, T. 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Disc. Farad. Soc., 1959, 27, 7–17.

    Article  Google Scholar 

  • Frank, H. A.; Cogdell, R. J. Photochemistry and function of carotenoids in photosynthesis, In: Carotenoids in photosynthesis; Young A.; Britton, G. Eds; Chapman & Fall: London, 1993, Chap. 8, pp. 252–326.

    Google Scholar 

  • Gantt, E. Phycobilisomes. Ann. Rev. Plant Physiol., 1981, 32, 327–347.

    Article  CAS  Google Scholar 

  • Gardian, Z.; Bumba, L.; Schrofel, A.; Herbstova, M.; Nebesarova, J.; Vacha, F. Organisation of photosystem I and photosystem II in red alga Cyanidium caldarium: encounter of cyanobacterial and higher plant concepts. Biochim. Biophys. Acta Bioenerg., 2007, 1767, 725–731.

    Google Scholar 

  • Ghosh A. K.; Govindjee Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios. Biophys. J., 1966, 6, 611–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillbro, T.; Sandström, Ã….; Sundström, V.; Wendler, J.; Holzwarth, A. Picosecond study of energy-transfer kinetics in phycobilisomes of Synechococcus 6301 and the mutant AN 112. Biochim. Biophys. Acta Bioenerg., 1985, 808, 52–65.

    Article  CAS  Google Scholar 

  • Guan, X.; Qin, S.; Zhao, F.; Zhang, X.; Tang, X. Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution. Int. J. Biol. Sci., 1996, 3, 434–445.

    Google Scholar 

  • Holt, N. E.; Kennis, J. T. M.; Osto, L. D.; Bassi, R.; Fleming, G. R. Carotenoid to chlorophyll energy transfer in light harvesting complex II from Arabidopsis thalaina probed by femtosecond fluorescence upconversion, Chem. Phys. Lett., 2003, 379, 305–313.

    Article  CAS  Google Scholar 

  • Holt, N. E.; Zigmantas, D.; Valkunas, L.; Li, X.; Niyogi, K. K.; Fleming, G. R. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science, 2005, 307, 433–436.

    Article  CAS  PubMed  Google Scholar 

  • Horton, P.; Ruban, A. V.; Walters, R. G. Regulation of light harvesting in green plants. Ann. Rev. Plant Physiol. Plant Mol. Biol., 1996, 47, 655–684.

    Article  CAS  Google Scholar 

  • Ito, H.; Tanaka, A. Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proc. Natl. Acad. Sci. USA, 2011, 108, 18014–18019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahlow, M. A.; Jarzeba, W.; DuBruil, T. P.; Barbara, P. F. Ultrafast emission spectroscopy in the ultraviolet by time-gated upconversion. Rev. Sci. Instrum., 1988, 59, 1098–1109.

    Article  CAS  Google Scholar 

  • Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res., 2007, 93, 7–16.

    Article  CAS  PubMed  Google Scholar 

  • Kowalczyk, N.; Rappaport, F.; Boyen, C.; Wollman, F-A.; Collén, J.; Joliot, P. Photosynthesis in Chondrus crispus: The contribution of energy spill-over in the regulation of excitonic flux. Biophys. Acta Bioenerg., 2013, 1827, 834–842.

    Google Scholar 

  • Koyama, K.; Tsuchiya, T.; Akimoto, S.; Yokono, M.; Miyashita, H.; Mimuro, M. New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett., 2006, 580, 3457–3461.

    Article  CAS  PubMed  Google Scholar 

  • Kozaki, A.; Takeba, G. Photorespiration protects C3 plants from photooxidation. Nature, 1996, 384, 557–560.

    Article  CAS  Google Scholar 

  • Kuvykin, I. V.; Ptushenko, V. V.; Vershubskii, A. V; Tikhonov, A. N. Regulation of electron transport in C3 plant chloroplasts in situ and in silico: Short-term effects of atmospheric CO2 and O2 . Biochim. Biophys. Acta Bioenerg., 2011, 1807, 336–347.

    Article  CAS  Google Scholar 

  • LeRosen, A. L.; Reid, C. E. An investigation of certain solvent effect in absorption spectra. J. Chem. Phys., 1952, 20, 233–236.

    Article  CAS  Google Scholar 

  • Liu, L.-N.; Zhou, B.-C.; Zhang, Y.-Z. Light-induced energetic decoupling as a mechanism for phycobilisome-related energy dissipation in red algae: a single molecule study. Plos One, 2008a, 3, e3134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, L.; Aartsma, T. J.; Thomas, J.; Lamers, G. E.; Zhou, B.; Zhang, Y. Watching the native supramolecular architecture of photosynthetic membrane in red algae: topography of phycobilisomes and their crowding, diverse distribution patterns. J. Biol. Chem., 2008b, 283, 34946–34953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L.-N.; Bryan, S. J.; Huang, F; Yu J.; Nixon, P. J.; Rich, P. R.; Mullineaux, C. W. Control of electron transport routes through redox- regulated redistribution of respiratory complexes. Proc. Natl. Acad. Sci. USA, 2012, 109, 11431–11436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimuro, M.; Akimoto, S. Energy transfer processes from fucoxanthin and peridinin to chlorophyll, In: Advances in Photosynthesis and Respiration, vol. 14, Photosynthesis in Algae; Larkum, A. W. D.; Douglas, S. E.; Raven, J. A., Eds.; Kluwer Academic Publishers: The Netherlands, 2003, pp. 335–349.

    Google Scholar 

  • Mimuro, M.; T. Katoh. Carotenoids in photosynthesis: absorption, transfer and dissipation of light energy. Pure Appl. Chem., 1991, 63, 123–130.

    Article  CAS  Google Scholar 

  • Mimuro M.; Kikuchi, H. Antenna systems and energy transfer in Cyanophyta and Rhodophyta, In: Light-harvesting antennas in photosynthesis; Green, B. R.; Parson, W. W. Eds; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003, pp. 281–306.

    Google Scholar 

  • Mimuro, M.; Akimoto, S.; Tomo, T.; Yokono, M.; Miyashita, H.; Tsuchiya, T. Delayed fluorescence observed in the nanosecond time region at 77 K originates directly from the photosystem II reaction center. Biochim. Biophys. Acta Bioenerg, 2007, 1767, 327–334.

    Google Scholar 

  • Mimuro, M.; Yamazaki, I.; Tamai, N.; Katoh, T. Excitation energy transfer in phycobilisomes at −196 °C isolated from the cyanobacterium Anabaena variabilis (M-3): evidence for the plural transfer pathways to the terminal emitters. Biochim. Biophys. Acta Bioenerg., 1989, 973, 153–162.

    Article  CAS  Google Scholar 

  • Mimuro, M.; Yokono, M.; Akimoto, S. Variations in photosystem I properties in the primordial cyanobacterium Gloeobacter violaceus PCC 7421. Photochem. Photobiol., 2010, 86, 62–69.

    Article  CAS  PubMed  Google Scholar 

  • Minagawa, J. State Transitions-the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. Biochim. Biophys. Acta Bioenerg., 2011, 1807, 897–905.

    Google Scholar 

  • Miyashita, H.; Ikemoto, H.; Kurano, N. Chlorophyll d as a major pigment. Nature, 1996, 383, 402.

    Article  CAS  Google Scholar 

  • Mullineaux, C. W. Excitation energy transfer from phycobilisomes to photosystem I in a cyanobacterium. Biochim. Biophys. Acta Bioenerg., 1992, 110, 285–292.

    Article  Google Scholar 

  • Mullineaux, C. W.; Allen, J. F. State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. Photosynth. Res., 1990, 23, 297–311.

    Article  CAS  PubMed  Google Scholar 

  • Mullineaux, C. W.; Holzwarth, A. R. Kinetics of excitation energy transfer in the cyanobacterial phycobilisome-Photosystem II complex. Biochim. Biophys. Acta Bioenerg., 1991, 1098, 68–78.

    Article  CAS  Google Scholar 

  • Munekage, Y.; Hashimoto, M.; Miyake, C.; Tomizawa, K.; Endo, T.; Tasaka, M.; Shikanai, T. Cyclic electron flow around photosystem I is essential for photosynthesis. Nature, 2004, 429, 579–582.

    Article  CAS  PubMed  Google Scholar 

  • Murata, N. Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim. Biophys. Acta Bioenerg., 1969, 172, 242–251.

    Article  CAS  Google Scholar 

  • Nixon, P. J.; Michoux, F.; Yu, J., Boehm, M.; Komenda, J. Recent advances in understanding the assembly and repair of photosystem II. Ann. Bot., 2010, 106, 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor, D. V.; Phillips, D. Time-correlated single photon counting; Academic Press: London, 1984.

    Google Scholar 

  • Rabinowitch, E.; Govindjee. Photosynthesis, Wiley: New York, 1969.

    Google Scholar 

  • Raven, J. A. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. New Phytol., 1990, 116, 1–18.

    Article  CAS  Google Scholar 

  • Ricci, M.; Bradforth, S. E.; Jimenez, R.; Fleming, G. R. Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light harvesting complexes. Chem. Phys. Lett., 1996, 259, 381–390.

    Article  CAS  Google Scholar 

  • Rippka, R.; Waterbury, J.; Cohen-Bazire, G. A cyanobacterium which lacks thylakoids. Arch. Microbiol., 1974, 100, 419–436.

    Article  CAS  Google Scholar 

  • Ruban, A. V.; Johnson, M. P; Duffy, C. D. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta Bioenerg., 2012, 1817, 167–181.

    Google Scholar 

  • Sarcina, M.; Tobin, M. J.; Mullineaux, C. W. Diffusion of phycobilisomes on the thylakoid membranes of the cyanobacterium Synechococcus 7942: Effects of phycobilisome size, temperature, and membrane lipid composition. J. Biol. Chem., 2001, 276, 46830–46834.

    Article  CAS  PubMed  Google Scholar 

  • Satoh, K.; Strasser, R.; Butler, W. L. A demonstration of energy transfer from photosystem II to photosystem I in chloroplasts. Biochim. Biophys. Acta, 1976, 440, 337–345.

    Article  PubMed  Google Scholar 

  • Shah, J. Ultrafast luminescence spectroscopy using sum frequency generation. IEEE J Quantum Electroc., 1988, 24, 276–288.

    Article  Google Scholar 

  • Shubin, V. V.; Murthy, S. D. S.; Karapetyan, N. V.; Mohanty, P. Origin of the 77 K variable fluorescence at 758 nm in the cyanobacterium Spirulina platensis. Biochim Biophys Acta Bioenerg., 1991, 1060, 28–36.

    Article  CAS  Google Scholar 

  • Shubin, V. V.; Bezsmertnaya, I. N.; Karapetyan, N. V. Isolation from Spirulina membranes of two photosystem I-type complexes one of which contains chlorophyll responsible for the 77K fluorescence band at 760 nm. FEBS Lett., 1992, 309, 340–342.

    Article  CAS  PubMed  Google Scholar 

  • Song, P.-S.; Koka, P.; Prezelin, B. B.; Haxo, F. T. Molecular topology of photosynthetic light-harvesting pigment complex, peridinin–chlorophyll-a–protein, from marine dinoflagellates. Biochemistry, 1976, 15, 4422–4427.

    Article  CAS  PubMed  Google Scholar 

  • Stowe-Evans, E. L.; Kehoe, D. M. Signal transduction during light-quality acclimation in cyanobacteria: a model system for understanding phytochrome-response pathways in prokaryotes. Photochem. Photobiol. Sci., 2004, 3, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Sutter, M.; Wilson, A.; Leverenz, R. L.; Lopez-Igual, R.; Thurotte, A.; Salmeen, A. E.; Kirilovsky, D.; Kerfeld, C. A. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl. Acad. Sci. USA, 2013a, 110, 10022–10027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter, M.; Wilson, A.; Leverenzd, R. L.; Lopez-Igualb, R.; Thurotte, A.; Salmeena, A. E.; Kirilovsky, D.; Kerfeld, C. A. Crystal structure of the FRP and identification of the active site for modulation of OCP-mediated photoprotection in cyanobacteria. Proc. Natl. Acad. Sci. USA, 2013b, 110, 10022–10027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamary, E.; Kiss, V.; Nevo, R.; Adam, Z.; Bernát, G.; Rexroth, S.; Rögner, M.; Reich, Z. Structural and functional alterations of cyanobacterial phycobilisomes induced by stress. Biochim. Biophys. Acta Bioenerg., 2012, 1817, 319–327.

    Google Scholar 

  • Theiss, C.; Schmitta, F.-J.; Pieperb, J.; Nganoua, C.; Grehn, M.; Vitali, M.; Olliges, R.; Eichler, H. J.; Eckert, H.-J. Excitation energy transfer in intact cells and in the phycobiliprotein antennae of the chlorophyll d containing cyanobacterium Acaryochloris marina. J. Plant Physiol., 2011, 168, 1473–1487.

    Article  CAS  PubMed  Google Scholar 

  • Tian, L.; van Stokkum, I. H.; Koehorst, R. B.; van Amerongen, H. Light harvesting and blue-green light induced non-photochemical quenching in two different C-phycocyanin mutants of Synechocystis PCC 6803. J. Phys. Chem. B, 2012, 117, 11000–11006.

    Article  PubMed  Google Scholar 

  • Tian, L.; van Stokkum, I. H.; Koehorst, R. B.; van Amerongen, H. Light harvesting and blue-green light induced non-photochemical quenching in two different C-phycocyanin mutants of Synechocystis PCC 6803. J. Phys. Chem. B, 2013, 117, 11000–11006.

    Article  CAS  PubMed  Google Scholar 

  • Tikkanen, M.; Nurmi, M.; Kangasjärvi, S.; Aro, E.-M. Core protein phosphorylation facilitates the repair of photodamaged photosystem II at high light. Biochim. Biophys. Acta Bioenerg., 2008, 1777, 1432–1437.

    Google Scholar 

  • Tsuchiya, T.; Tomo, T.; Akimoto, S.; Murakami, A.; Mimuro, M. Unique optical properties of LHC II isolated from Codium fragile – its correlation to protein environment, In: Photosynthesis. Energy from the Sun; Allen, J.; Gantt, E.; Golbeck, J.; Osmond, B. Eds; Springer: Dordrecht, 2008, pp. 343–346.

    Chapter  Google Scholar 

  • Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Ã…. Nature, 2011, 473, 55–60.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W.; Qin, X.; Sang, M.; Chen, D.; Wang, K.; Lin, R.; Lu, C.; Shen, J.-R., Kuang, T. Spectral and functional studies on siphonaxanthin-type light- harvesting complex of photosystem II from Bryopsis corticulans. Photosynth Res., 2013, 117, 267–279.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A.; Ajlani, G.; Verbavatz, J.-M.; Vass, I.; Kerfeld, C. A.; Kirilovsky, D. A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell Online, 2006, 18, 992–1007.

    Article  CAS  Google Scholar 

  • Yamazaki, T.; Nishimura, Y.; Yamazaki, I,; Hirano, M.; Matsuura, K.; Shimada, K.; Mimuro, M. Energy migration in allophycocyanin-B trimer with a linker polypeptide: analysis by the principal multi-component spectral estimation (PMSE) method. FEBS Lett., 1994, 353, 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Yokono, M.; Murakami, A.; Akimoto, S. Excitation energy transfer between photosystem II and photosystem I in red algae: Larger amounts of phycobilisome enhance spillover. Biochim. Biophys. Acta Bioenerg., 2011, 1807, 847–853.

    Google Scholar 

  • Yokono, M.; Akimoto, S; Tanaka, A. Seasonal changes of excitation energy transfer and thylakoid stacking in the evergreen tree Taxus cuspidata: How does it divert excess energy from photosynthetic reaction center? Biochim. Biophys. Acta Bioenerg., 2008a, 1777, 379–387.

    Google Scholar 

  • Yokono, M.; Akimoto, S.; Koyama, K.; Tsuchiya, T.; Mimuro, M. Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim. Biophys. Acta Bioenerg., 2008b, 1777, 55–65.

    Google Scholar 

  • Yokono, M.; Uchida, H.; Suzawa, Y.; Akiomoto, S.; Murakami, A. Stabilization and modulation of the phycobilisome by calcium in the calciphilic freshwater red alga Bangia atropurpurea. Biochim. Biophys. Acta Bioenerg., 2012a, 1817, 306–311.

    Google Scholar 

  • Yokono, M.; Tomo, T.; Nagao, R.; Ito, H.; Tanaka, A.; Akimoto, S. Alterations in photosynthetic pigments and amino acid composition of D1 protein change energy distribution in photosystem II. Biochim. Biophys. Acta Bioenerg., 2012b, 1817, 754–759.

    Google Scholar 

  • Yokono, M.; Takabayashi, A.; Akimoto, S.; Tanaka, A. A megacomplex composed of both photosystem reaction centres in higher plants. Nat. Commun., 2015, 6, 6675.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Mimuro and Prof. Tsuchiya (Kyoto University), Prof. Yamazaki and Prof. Tanaka (Hokkaido University), Prof. Takaichi (Nippon Medical School), Prof. Tomo (Tokyo University of Science), and Prof. Murakami and Prof. Kondo (Kobe University), for helpful discussion and important contributions to the research surveyed in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Akimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Akimoto, S., Yokono, M. (2017). How Light-Harvesting and Energy-Transfer Processes Are Modified Under Different Light Conditions: STUDIES by Time-Resolved Fluorescence Spectroscopy. In: Hou, H., Najafpour, M., Moore, G., Allakhverdiev, S. (eds) Photosynthesis: Structures, Mechanisms, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-48873-8_8

Download citation

Publish with us

Policies and ethics

Navigation