Log in

Arbuscular mycorrhizal fungi alter nitrogen allocation in the leaves of Populus × canadensis ‘Neva’

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Intra-leaf nitrogen allocation plays a pivotal role in plant growth performance; however, the effects of arbuscular mycorrhizal (AM) fungi on the allocation of nitrogen within a leaf remain poorly understood.

Methods

A pot experiment was conducted with different nitrogen levels and Populus × canadensis ‘Neva’ with or without Rhizophagus irregularis inoculation. The fractions of leaf nitrogen allocated to water-soluble protein, membrane-bound protein, cell wall protein and photosynthetic apparatus were used to estimate nitrogen allocation strategy.

Results

AM fungi increased the light-saturated photosynthetic rate (Pmax) and photosynthetic nitrogen use efficiency (PNUE) under low nitrogen levels, whereas the nitrogen content per unit area (Narea) and nitrogen content per unit mass (Nmass) were unaffected. AM inoculation decreased leaf mass per area (LMA) and the fraction of leaf nitrogen allocated to cell walls but increased the fraction of nitrogen allocated to photosynthesis under low nitrogen levels. The increased fraction of photosynthetic nitrogen allocated to carboxylation (PC) and bioenergetics (PB) in response to AM inoculation under low nitrogen levels contributed to the higher Pmax and PNUE values.

Conclusion

The improved photosynthesis and PNUE resulting from AM inoculation were mostly determined by the relative allocation of nitrogen to photosynthesis and not by the leaf nitrogen concentration. AM fungi may enhance nitrogen allocation to photosynthesis at the expense of cell walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizal

LMA:

Leaf mass per area

Narea :

Nitrogen content per unit area

NB :

Nitrogen contents in bioenergetics

NC :

Nitrogen contents in carboxylation

NL :

Nitrogen contents in light-harvesting

Nmass :

Nitrogen content per unit mass

PB :

The fraction of leaf nitrogen allocated to bioenergetics

PC :

The fraction of leaf nitrogen allocated to carboxylation

PL :

The fraction of leaf nitrogen allocated to light-harvesting

Pmax :

Light-saturated photosynthetic rate

PNUE:

Photosynthetic nitrogen use efficiency

References

  • Andrade SAL, Malik S, Sawaya ACHF, Bottcher A, Mazzafera P (2013) Association with arbuscular mycorrhizal fungi influences alkaloid synthesis and accumulation in Catharanthus roseus and Nicotiana tabacum plants. Acta Physiol Plant 35:867–880

    Article  CAS  Google Scholar 

  • Bao SD (2000) Soil and agricultural chemistry analysis. China Agriculture Press, Bei**g

    Google Scholar 

  • Cavagnaro T, Jackson L, Six J, Ferris H, Goyal S, Asami D, Scow K (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    Article  CAS  Google Scholar 

  • Chapin FS, Kedrowski RA (1983) Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology 64:376–391

    Article  CAS  Google Scholar 

  • Corrêa A, Cruz C, Ferrol N (2015) Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25:499–515

    Article  PubMed  Google Scholar 

  • Coste S, Roggy J-C, Imbert P, Born C, Bonal D, Dreyer E (2005) Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. Tree Physiol 25:1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57:465–470

    CAS  Google Scholar 

  • Feng YL, GL F, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta 228:383–390

    Article  CAS  PubMed  Google Scholar 

  • Feng YL, Lei YB, Wang RF et al (2009) Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. P Natl Acad Sci USA 106:1853–1856

    Article  CAS  Google Scholar 

  • Frosi G, Barros VA, Oliveira MT, Santos M, Ramos DG, Maia LC, Santos MG (2016) Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. J Plant Physiol 207:84–93

    Article  CAS  PubMed  Google Scholar 

  • Funk JL, Glenwinkel LA, Sack L (2013) Differential allocation to photosynthetic and non-photosynthetic nitrogen fractions among native and invasive species. PLoS One 8:e64502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gleadow RM, Woodrow IE (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol 20:591–598

    Article  CAS  PubMed  Google Scholar 

  • Govindarajulu M, Pfeffer PE, ** H et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823

    Article  CAS  PubMed  Google Scholar 

  • Grassi G, Colom MR, Minotta G (2001) Effects of nutrient supply on photosynthetic acclimation and photoinhibition of one-year-old foliage of Picea abies. Physiol Plantarum 111:245–254

    Article  CAS  Google Scholar 

  • Hacke UG, Plavcová L, Almeida-Rodriguez A, King-Jones S, Zhou WC, Cooke JEK (2010) Influence of nitrogen fertilization on xylem traits and aquaporin expression in stems of hybrid poplar. Tree Physiol 30:1016–1025

    Article  CAS  PubMed  Google Scholar 

  • He F, Zhang HQ, Tang M (2016) Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. Mycorrhiza 26:311–323

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Shigeno A (2009) The role of rubisco and cell walls in the interspecific variation in photosynthetic capacity. Oecologia 160:443–451

    Article  PubMed  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386:1–19

    Article  CAS  Google Scholar 

  • ** H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    Article  CAS  PubMed  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber frown at 3 nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Wilson GW, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484

    Article  CAS  PubMed  Google Scholar 

  • Kant S, Bi YM, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62:1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Kong ZY, Glick BR, Duan J, Ding SL, Tian J, McConkey BJ, Wei GH (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-overproducing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398

    Article  CAS  Google Scholar 

  • Li H, **ang D, Wang C, Li XL, Lou Y (2012) Effects of epigeic earthworm (Eisenia fetida) and arbuscular mycorrhizal fungus (Glomus intraradices) on enzyme activities of a sterilized soil-sand mixture and nutrient uptake by maize. Biol Fert. Soils 48:879–887

    CAS  Google Scholar 

  • Li Z, Wu N, Liu T, Chen H, Tang M (2015) Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiol Plantarum 155:192–204

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 603:591–592

    Article  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Makino A, Sato T, Nakano H, Mae T (1997) Leaf photosynthesis, plant growth and nitrogen allocation in rice under different irradiances. Planta 203:390–398

    Article  CAS  Google Scholar 

  • Marulanda A, Azcón R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plantarum 119:526–533

    Article  CAS  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller RE, Gleadow RM, Cavagnaro TR (2014) Age versus stage: does ontogeny modify the effect of phosphorus and arbuscular mycorrhizas on above- and below-ground defence in forage sorghum? Plant Cell Environ 37:929–942

    Article  CAS  PubMed  Google Scholar 

  • Niinemets Ü, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Niinemets Ü, Valladares F, Ceulemans R (2003) Leaf-level phenotypic variability and plasticity of invasive Rhododendron ponticum and non-invasive Ilex aquifolium co-occurring at two contrasting European sites. Plant Cell Environ 26:941–956

    Article  PubMed  Google Scholar 

  • Niinemets Ü, Keenan TF, Hallik L (2015) A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol 205:973–993

    Article  CAS  PubMed  Google Scholar 

  • Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Funct Ecol 18:419–425

    Article  Google Scholar 

  • Page AL (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America

  • Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN118

    Article  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J (2016) Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon Gerardii under limited nitrogen supply. Ecol Evol 6:4332–4346

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds HL, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880

    Article  CAS  PubMed  Google Scholar 

  • Ripullone F, Grassi G, Lauteri M, Borghetti M (2003) Photosynthesis-nitrogen relationships: interpretation of different patterns between Pseudotsuga menziesii and Populus x euroamericana in a mini-stand experiment. Tree Physiol 23:137–144

    Article  PubMed  Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009) A safe operating space for humanity. Nature 461:472–475

    Article  PubMed  Google Scholar 

  • Ruotsalainen AL, Kytӧviita MM (2004) Mycorrhiza does not alter low temperature impact on Gnaphalium norvegicum. Oecologia 140:226–233

    Article  PubMed  Google Scholar 

  • Rydlová J, Püschel D, Dostálová M, Janoušková M, Frouz J (2016) Nutrient limitation drives response of Calamagrostis epigejos to arbuscular mycorrhiza in primary succession. Mycorrhiza 26:757–767

    Article  PubMed  Google Scholar 

  • Schmollinger S, Mühlhaus T, Boyle NR et al (2014) Nitrogen-sparing mechanisms in chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26:1410–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M, Tang M, Zhang FF, Huang YH (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430

    Article  PubMed  Google Scholar 

  • Shi SM, Chen K, Gao Y, Liu B, Yang XH, Huang XZ, Liu GX, Zhu LQ, He XH (2016) Arbuscular mycorrhizal fungus species dependency governs better plant physiological characteristics and leaf quality of mulberry (Morus alba L.) seedlings. Front Microbiol 7:1030

    PubMed  PubMed Central  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. 3rd edn. Academic Press, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Sun SW, Lin YC, Weng YM, Chen MJ (2006) Efficiency improvements on ninhydrin method for amino acid quantification. J Food Compos Anal 19:112–117

    Article  CAS  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Tian YH, Lei YB, Zheng YL, Cai ZQ (2013) Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis seedlings. Acta Physiol Plant 35:687–696

    Article  CAS  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  Google Scholar 

  • Wang X, Pan Q, Chen F, Yan X, Liao H (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181

    Article  PubMed  Google Scholar 

  • Wu F, Zhang H, Fang F, Wu N, Zhang Y, Tang M (2017) Effects of nitrogen and exogenous Rhizophagus irregularis on the nutrient status, photosynthesis and leaf anatomy of Populus × canadensis ‘Neva’. J Plant Growth Regul https://doi.org/10.1007/s00344-017-9686-6

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ 34:764–777

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41671268 and 31270639, http://www.nsfc.gov.cn/), the Shaanxi Science and Technology Innovation Project Plan (2016KTCL02-07), the Excellent Young Teachers Training Program (Z111021605), and the Fundamental Research Fund of Northwest A&F University (2452015169).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Tang.

Additional information

Responsible Editor: Duncan D. Cameron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, H., Fang, F. et al. Arbuscular mycorrhizal fungi alter nitrogen allocation in the leaves of Populus × canadensis ‘Neva’. Plant Soil 421, 477–491 (2017). https://doi.org/10.1007/s11104-017-3461-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3461-0

Keywords

Navigation