Log in

Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Many studies have established that arbuscular mycorrhizal fungi transfer N to the host plant. However, the role and importance of arbuscular mycorrhiza (AM) in plant N nutrition is still uncertain, as are the C/N interactions within the symbiosis. Published reports provide differing, and often contradictory, results that are difficult to combine in a coherent framework. This review explores questions such as: What makes the difference between a positive and a negative effect of AM on plant N nutrition? Is the mycorrhizal N response (MNR) correlated to the mycorrhizal growth response (MGR), and how or under which conditions? Is the MNR effect on plant growth C mediated? Is plant C investment on fungal growth related to N needs or N benefit? How is the N for C trade between symbionts regulated? The patternless nature of current knowledge is made evident, and possible reasons for this are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alberton O, Kuyper T, Gorissen A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytol 167:859–868. doi:10.1111/j.1469-8137.2005.01458.x

    Article  CAS  PubMed  Google Scholar 

  • Alberton O, Kuyper TW, Gorissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172. doi:10.1007/s11104-007-9306-5

    Article  CAS  Google Scholar 

  • Aleklett K, Wallander H (2012) Effects of organic amendments with various nitrogen levels on arbuscular mycorrhizal fungal growth. Appl Soil Ecol 60:71–76. doi:10.1016/j.apsoil.2012.03.007

    Article  Google Scholar 

  • Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from Two 15 N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol 95:381–396

    Article  Google Scholar 

  • Antunes P, Lehmann A, Hart M et al (2012) Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Funct Ecol 26:532–540. doi:10.1111/j.1365-2435.2011.01953.x

    Article  Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246. doi:10.1007/s00572-008-0215-0

    Article  CAS  PubMed  Google Scholar 

  • Azcón-Aguilar C, Alba C, Montilla M, Barea JM (1993) Isotopic (15 N) evidence of the use of less available N forms by VA mycorrhizas. Symbiosis 15:39–48

    Google Scholar 

  • Bååth E, Spokes J (1989) The effect of added nitrogen and phosphorus on mycorrhizal growth response and infection in Allium schoenoprasum. Can J Bot 67:3227–3232. doi:10.1139/b89-402

    Article  Google Scholar 

  • Bago B, Pfeffer P, Shachar‐Hill Y (2001) Could the urea cycle be translocating nitrogen in the arbuscular mycorrhizal symbiosis? New Phytol 149:4–8

    Article  CAS  Google Scholar 

  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant-Microbe Interact 20:1055–1062. doi:10.1094/MPMI-20-9-1055

    Article  CAS  PubMed  Google Scholar 

  • Barea J, El-Atrach F, Azcón R (1989) Mycorrhiza and phosphate interactions as affecting plant development, N2-fixation, N-transfer and N-uptake from soil in mixtures by using a 15N dilution technique. Soil Biol Biochem 21:581–589

    Article  Google Scholar 

  • Becerra A, Arrigo N, Bartoloni N et al (2007) Arbuscular mycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters. Ciencias Suelo (Argentina) 25:7–13

    Google Scholar 

  • Bi Y, Li X, Christie P (2003) Influence of early stages of arbuscular mycorrhiza on uptake of zinc and phosphorus by red clover from a low-phosphorus soil amended with zinc and phosphorus. Chemosphere 50:831–837

    Article  CAS  PubMed  Google Scholar 

  • Blanke V, Renker C, Wagner M et al (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol 166:981–992. doi:10.1111/j.1469-8137.2005.01374.x

    Article  CAS  PubMed  Google Scholar 

  • Blanke V, Wagner M, Renker C et al (2011) Arbuscular mycorrhizas in phosphate-polluted soil: interrelations between root colonization and nitrogen. Plant Soil 343:379–392. doi:10.1007/s11104-011-0727-9

    Article  CAS  Google Scholar 

  • Bressan W (2001) Effect of phosphorus and nitrogen on“in vitro” spore germination of Glomus etunicatum Becker & Gerdemann, root growth and mycorrhizal colonization. Braz J Microbiol 32:276–280

    Article  Google Scholar 

  • Breuillin F, Schramm J, Hajirezaei M et al (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64:1002–1017. doi:10.1111/j.1365-313X.2010.04385.x

    Article  CAS  PubMed  Google Scholar 

  • Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165:899–911. doi:10.1111/j.1469-8137.2004.01274.x

    Article  PubMed  CAS  Google Scholar 

  • Busby R, Gebhart D, Stromberger M et al (2011) Early seral plant species’ interactions with an arbuscular mycorrhizal fungi community are highly variable. Appl Soil Ecol 48:257–262. doi:10.1016/j.apsoil.2011.04.014

    Article  Google Scholar 

  • Büscher M, Zavalloni C, de Boulois H et al (2012) Effects of arbuscular mycorrhizal fungi on grassland productivity are altered by future climate and below-ground resource availability. Environ Exp Bot 81:62–71. doi:10.1016/j.envexpbot.2012.03.003

    Article  Google Scholar 

  • Cavagnaro T, Jackson L, Six J et al (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225. doi:10.1007/s11104-005-5847-7

    Article  CAS  Google Scholar 

  • Chambers C, Smith S, Smith F (1980) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47–62. doi:10.1111/j.1469-8137.1980.tb04447.x

    Article  CAS  Google Scholar 

  • Chen M, Yin H, O’Connor P et al (2009) C:N:P stoichiometry and specific growth rate of clover colonized by arbuscular mycorrhizal fungi. Plant Soil 326:21–29. doi:10.1007/s11104-009-9982-4

    Article  CAS  Google Scholar 

  • Chulan HA (1991) Effect of fertilizer and encomycorrhizal inoculum on growth and nutrient uptake of cocoa (Theobroma cacao L.) seedlings. Biol Fertil Soils 11:250–254

    Article  Google Scholar 

  • Clark R, Zeto S (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503. doi:10.1016/S0038-0717(96)00163-0

    Article  CAS  Google Scholar 

  • Clark R, Zobel R, Zeto S (1999) Effects of mycorrhizal fungus isolates on mineral acquisition by Panicum virgatum in acidic soil. Mycorrhiza 9:167–176. doi:10.1007/s005720050302

    Article  CAS  Google Scholar 

  • Cliquet J, Murray P, Boucaud J (1997) Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol 137:345–349

    Article  CAS  Google Scholar 

  • Compant S, van der Heijden M, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol Ecol 73:197–214. doi:10.1111/j.1574-6941.2010.00900.x

    CAS  PubMed  Google Scholar 

  • Cooperband L, Boerner R, Logan T (1994) Humid tropical leguminous tree and pasture grass responsiveness to vesicular-arbuscular mycorrhizal infection. Mycorrhiza 4:233–239

    Article  Google Scholar 

  • Corrêa A, Strasser R, Martins-Loução M (2008) Response of plants to ectomycorrhiza in N-limited conditions: which factors determine its variation? Mycorrhiza 18:413–427. doi:10.1007/s00572-008-0195-0

    Article  PubMed  Google Scholar 

  • Corrêa A, Gurevitch J, Martins-Loução M, Cruz C (2012) C allocation to the fungus is not a cost to the plant in ectomycorrhiza. Oikos 121:449–463. doi:10.1111/j.1600-0706.2011.19406.x

    Article  Google Scholar 

  • Corrêa A, Cruz C, Pérez-Tienda J, Ferrol N (2014) Shedding light onto nutrient responses of arbuscular mycorrhizal plants: nutrient interactions may lead to unpredicted outcomes of the symbiosis. Plant Sci 221–222:29–41. doi:10.1016/j.plantsci.2014.01.009

    Article  PubMed  CAS  Google Scholar 

  • Craine JM, Elmore AJ, Aidar MPM et al (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992. doi:10.1111/j.1469-8137.2009.02917.x

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Green J, Watson C et al (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184. doi:10.1007/s00572-003-0254-5

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Egsgaard H, Trujillo C et al (2007) Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. Plant Physiol 144:782–792. doi:10.1104/pp. 106.090522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cruz C, Fegghi Z, Martins-Loução M, Varma A (2013) Plant nitrogen use efficiency may be improved through symbiosis with Piriformospora indica. In: Varma A, Kost G, Oelmüller R (eds) Soil Biol. Vol. 33. Piriformospora indica. Sebacinales their Biotechnol. Appl. Springer, pp 285–293

  • Cuenca G, Azcón R (1994) Effects of ammonium and nitrate on the growth of vesicular-arbuscular mycorrhizal Erythrina poeppigiana 0.I. Cook seedlings. Biol Fertil Soils 18:249–254

    Article  Google Scholar 

  • Cui M, Caldwell M (1996) Facilitation of plant phosphate acquisition by arbuscular mycorrhizas from enriched soil patches. I. Roots and hyphae exploiting the same soil volume. New Phytol 133:453–460

    Article  CAS  Google Scholar 

  • Douds D, Galvez L, Bécard G, Kapulnik Y (1998) Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytol 138:27–35

    Article  Google Scholar 

  • Douds DD, Nagahashi G, Shenk JE, Demchak K (2008) Inoculation of strawberries with AM fungi produced on-farm increased yield. Biol Agric Hortic 26:209–219. doi:10.1080/01448765.2008.9755084

    Article  Google Scholar 

  • Edathil TT, Manian S, Udaiyan K (1996) Interaction of multiple VAM fungal species on root colonization, plant growth and nutrient status of tomato seedlings (Lycopersicon esculentum Mill.). Agric Ecosyst Environ 59:63–68

    Article  Google Scholar 

  • Eom A, Hartnett D, Wilson G, Figge D (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Article  Google Scholar 

  • Fay P, Mitchell D, Osborne B (1996) Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol 132:425–433. doi:10.1111/j.1469-8137.1996.tb01862.x

    Article  CAS  Google Scholar 

  • Fellbaum C, Gachomo E, Beesetty Y et al (2011) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. PNAS 109:2666–2671. doi:10.1073/pnas.1118650109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1118650109

    Article  Google Scholar 

  • Fellbaum CR, Mensah JA, Cloos AJ et al (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 203:646–656. doi:10.1111/nph.12827

    Article  CAS  PubMed  Google Scholar 

  • Ferrol N, Pérez-Tienda J (2009) Coordinated nutrient exchange in arbuscular mycorrhiza. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas - funct process ecol. Impact. Springer, Berlin Heidelberg, pp 73–87

    Chapter  Google Scholar 

  • Fitter A (2006) What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol 172:3–6. doi:10.1111/j.1469-8137.2006.01865.x

    Article  CAS  PubMed  Google Scholar 

  • Fonseca H, Berbara R, Daft M (2001) Shoot d15 N and d13 C values of non-host Brassica rapa change when exposed to Glomus etunicatum inoculum and three levels of phosphorus and nitrogen. Mycorrhiza 11:151–158. doi:10.1007/s005720100125

    Article  CAS  PubMed  Google Scholar 

  • Frey B, Schuepp H (1993) Acquisition of arbuscular Zea of nitrogen mycorrhizal by external fungi hyphae associated with Zea mays L. New Phytol 124:221–230

    Article  Google Scholar 

  • Furlan V, Bernier-Cardou M (1989) Effects of N, P, and K on formation of vesicular-arbuscular mycorrhiza, growth and mineral content of onion. Plant Soil 174:167–174

    Article  Google Scholar 

  • Gabriel-Neumann E, Neumann G, Leggewie G, George E (2011) Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. J Plant Physiol 168:911–919

    Article  CAS  PubMed  Google Scholar 

  • Gange A, Ayres R (1999) On the relation between arbuscular and colonization plant ‘benefit’. Oikos 87:615–621

    Article  Google Scholar 

  • Gao X, Kuyper T, Zou C et al (2006) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant Soil 290:283–291. doi:10.1007/s11104-006-9160-x

    Article  CAS  Google Scholar 

  • George E, Häussler K, Vetterlein D et al (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137. doi:10.1139/b92-265

    Article  Google Scholar 

  • Goicoechea N, Antolin M, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhiza and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261–268

    Article  CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P et al (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10. doi:10.1186/1471-2229-9-10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Govindarajulu M, Pfeffer PE, ** H et al (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi:10.1038/nature03610

    Article  CAS  PubMed  Google Scholar 

  • Grace E, Cotsaftis O, Tester M et al (2009) Arbuscular mycorrhizal inhibition of growth in barley cannot be attributed to extent of colonization, fungal phosphorus uptake or effects on expression of plant phosphate transporter genes. New Phytol 181:938–949. doi:10.1111/j.1469-8137.2008.02720.x

    Article  CAS  PubMed  Google Scholar 

  • Graham J, Abbott L (2000) Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220:207–218

    Article  CAS  Google Scholar 

  • Graham J, Eissenstat D (1994) Host genotype and the formation and function of VA mycorrhiza. Plant Soil 159:179–185

    Google Scholar 

  • Graham J, Eissenstat D (1998) Field evidence for the carbon cost of citrus mycorrhizas. New Phytol 140:103–110

    Article  Google Scholar 

  • Graham J, Duncan L, Eissenstat D (1997) Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol 135:335–343

    Article  CAS  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R et al (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83. doi:10.1104/pp. 109.136390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hamel C, Smith D (1991) Interspecific N-transfer and plant development in a mycorhizal field-grown mixture. Soil Biol Biochem 23:661–665

    Article  Google Scholar 

  • Hartwig UA, Wittmann P, Braun R et al (2002) Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO(2). J Exp Bot 53:1207–1213

    Article  CAS  PubMed  Google Scholar 

  • Hawkins H, George E (1999) Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol Plant 105:694–700. doi:10.1034/j.1399-3054.1999.105414.x

    Article  CAS  Google Scholar 

  • Hawkins H, George E (2001) Reduced 15N-nitrogen transport through arbuscular mycorrhizal hyphae to Triticum aestivum L. supplied with ammonium vs. nitrate nutrition. Ann Bot 87:303–311. doi:10.1006/anbo.2000.1305

    Article  CAS  Google Scholar 

  • Hawkins H, Cramer M, George E (1999) Root respiratory quotient and nitrate uptake in hydroponically grown non-mycorrhizal and mycorrhizal wheat. Mycorrhiza 9:57–60. doi:10.1007/s005720050263

    Article  CAS  Google Scholar 

  • Hawkins H, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285

    Article  CAS  Google Scholar 

  • Hays R, Reid C, St John T, Coleman D (1982) Effects of nitrogen and phosphorus on blue grama growth and mycorrhizal infection. Oecologia 54:260–265. doi:10.1007/BF00378401

    Article  Google Scholar 

  • Helgason T, Fitter A (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480. doi:10.1093/jxb/erp144

    Article  CAS  PubMed  Google Scholar 

  • Hepper C (1983) The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol 93:389–399

    Article  CAS  Google Scholar 

  • Hodge A, Fitter A (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci 107:13754–13759. doi:10.1073/pnas.1005874107/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1005874107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoeksema JD, Chaudhary VB, Gehring CA et al (2010) A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett 13:394–407. doi:10.1111/j.1461-0248.2009.01430.x

    Article  PubMed  Google Scholar 

  • Ibijbijen J, Urquiaga S, Ismaili M (1996) Effect of arbuscular mycorrhizas on uptake of nitrogen by Brachiaria arrecta and Sorghum vulgare from soils labelled for several years with 15N. New Phytol 133:487–494

    Article  CAS  Google Scholar 

  • Jackson L, Miller D, Smith S (2002) Arbuscular mycorrhizal colonization and growth of wild and cultivated lettuce in response to nitrogen and phosphorus. Sci Hortic Amst 94:205–218. doi:10.1016/S0304-4238(01)00341-7

    Article  Google Scholar 

  • Janos D (2007) Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza 17:75–91. doi:10.1007/s00572-006-0094-1

    Article  PubMed  Google Scholar 

  • Javot H, Penmetsa R, Terzaghi N et al (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 104:1720–1725. doi:10.1073/pnas.0608136104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Javot H, Penmetsa RV, Breuillin F et al (2011) Medicago truncatula MtPt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68:954–965. doi:10.1111/j.1365-313X.2011.04746.x

    Article  CAS  PubMed  Google Scholar 

  • Jensen A, Jakobsen I (1980) The occrrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414

    Article  CAS  Google Scholar 

  • Jia Y, Gray V, Straker C (2004) The influence of Rhizobium and arbuscular mycorrhizal fungi on nitrogen and phosphorus accumulation by Vicia faba. Ann Bot 94:251–258. doi:10.1093/aob/mch135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • ** H, Pfeffer P, Douds D et al (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696. doi:10.1111/j.1469-8137.2005.01536.x

    Article  CAS  PubMed  Google Scholar 

  • Johansen A (1999) Depletion of soil mineral N by roots of Cucumis sativus L. colonized or not by arbuscular mycorrhizal fungi. Plant Soil 209:119–127

    Article  CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen E (1994) Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160:1–9

    Article  CAS  Google Scholar 

  • Johnson C (1984) Phosphorus nutrition on mycorrhizal colonization, photosynthesis, growth and nutrient composition of Citrus aurantium. Plant Soil 80:35–42

    Article  CAS  Google Scholar 

  • Johnson N (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185:631–647. doi:10.1111/j.1469-8137.2009.03110.x

    Article  CAS  PubMed  Google Scholar 

  • Johnson N, Graham J, Smith F (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585. doi:10.1046/j.1469-8137.1997.00729.x

    Article  Google Scholar 

  • Johnson N, Rowland D, Corkidi L et al (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Jongen M, Fay P, Jones M (1996) Effects of elevated carbon dioxide and arbuscular mycorrhizal infection on Trifolium repens. New Phytol 132:413–423

    Article  CAS  Google Scholar 

  • Jumpponen A, Trowbridge J, Mandyam K, Johnson L (2005) Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition—evidence from rDNA data. Biol Fertil Soils 41:217–224. doi:10.1007/s00374-005-0845-8

    Article  CAS  Google Scholar 

  • Karagiannidis N, Nikolaou N, Ipsilantis I, Zioziou E (2007) Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 18:43–50. doi:10.1007/s00572-007-0153-2

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper T, Leffelaar P et al (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244. doi:10.1016/j.soilbio.2009.03.005

    Article  CAS  Google Scholar 

  • Kaschuk G, Leffelaar P, Giller K et al (2010) Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol Biochem 42:125–127. doi:10.1016/j.soilbio.2009.10.017

    Article  CAS  Google Scholar 

  • Kiers E, Duhamel M, Beesetty Y et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333(80):880–882

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Cho Y, Sohn B et al (2002) Cold-storage of mixed inoculum of Glomus intraradices enhances root colonization, phosphorus status and growth of hot pepper. Plant Soil 238:267–272

    Article  CAS  Google Scholar 

  • Klironomos J (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Kobae Y, Tamura Y, Takai S et al (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415. doi:10.1093/pcp/pcq099

    Article  CAS  PubMed  Google Scholar 

  • Koegel S, Ait Lahmidi N, Arnould C et al (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol 198:853–865. doi:10.1111/nph.12199

    Article  CAS  PubMed  Google Scholar 

  • Kyllo D, Velez V, Tyree M (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol 160:443–454. doi:10.1046/j.1469-8137.2003.00896.x

    Article  Google Scholar 

  • Landis FC, Fraser LH (2008) A new model of carbon and phosphorus transfers in arbuscular mycorrhizas. New Phytol 177:466–479. doi:10.1111/j.1469-8137.2007.02268.x

    CAS  PubMed  Google Scholar 

  • Leigh J, Hodge A, Fitter A (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181:199–207. doi:10.1111/j.1469-8137.2008.02630.x

    Article  CAS  PubMed  Google Scholar 

  • Li H, Smith S, Holloway R et al (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543. doi:10.1111/j.1469-8137.2006.01846.x

    Article  CAS  PubMed  Google Scholar 

  • Li H, Smith F, Dickson S et al (2008) Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? New Phytol 178:852–862. doi:10.1111/j.1469-8137.2008.02410.x

    Article  PubMed  Google Scholar 

  • Liu Y, Shi G, Mao L et al (2012) Direct and indirect influences of 8 years of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535. doi:10.1111/j.1469-8137.2012.04050.x

    Article  CAS  PubMed  Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R et al (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161

    Article  Google Scholar 

  • Maiti D, Toppo N, Variar M (2011) Integration of crop rotation and arbuscular mycorrhiza (AM) inoculum application for enhancing AM activity to improve phosphorus nutrition and yield of upland rice (Oryza sativa L.). Mycorrhiza 21:659–667. doi:10.1007/s00572-011-0376-0

    Article  PubMed  Google Scholar 

  • Miller R, Miller S, Jastrow J, Rivetta C (2002) Mycorrhizal mediated feedbacks influence net carbon gain and nutrient uptake in Andropogon gerardii. New Phytol 155:149–162

    Article  CAS  Google Scholar 

  • Moora M, Öpik M, Sen R, Zobel M (2004) Native arbuscular mycorrhizal fungal communities differentially influence the seedling performance of rare and common Pulsatilla species. Funct Ecol 18:554–562. doi:10.1111/j.0269-8463.2004.00876.x

    Article  Google Scholar 

  • Müller J, Mohr U, Sprenger N et al (1999) Pool sizes of fructans in roots and leaves of mycorrhizal and non-mycorrhizal barley. New Phytol 142:551–559

    Article  Google Scholar 

  • Ning J, Cumming J (2001) Arbuscular mycorrhizal fungi alter phosphorus relations of broomsedge (Andropogon virginicus L.) plants. J Exp Bot 52:1883–1891

    Article  CAS  PubMed  Google Scholar 

  • Nordin A, Schmidt I, Shaver G (2004) Nitrogen uptake by arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85:955–962

    Article  Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS ONE 9:e90841. doi:10.1371/journal.pone.0090841

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oliver AJ, Smith SE, Nicholas DJD, Wallace W (1983) Activity of nitrate reductase in Trifollium subterraneum: effects of mycorrhizal infection and phosphate nutrition. New Phytol 94:63–79

    Article  CAS  Google Scholar 

  • Olsson P, Van Aarle I, Allaway W et al (2002) Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171. doi:10.1104/pp. 009639.the

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olsson P, Burleigh S, van Aarle I (2005) The influence of external nitrogen on carbon allocation to Glomus intraradices in monoxenic arbuscular mycorrhiza. New Phytol 168:677–686. doi:10.1111/j.1469-8137.2005.01532.x

    Article  CAS  PubMed  Google Scholar 

  • Olsson P, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72:125–131. doi:10.1111/j.1574-6941.2009.00833.x

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Tienda J, Testillano P, Balestrini R et al (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055. doi:10.1016/j.fgb.2011.08.003

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Tienda J, Corrêa A, Azcón-Aguilar C, Ferrol N (2014) Transcriptional regulation of host NH4+ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots. Plant Physiol Biochem 75:1–8. doi:10.1016/j.plaphy.2013.11.029

    Article  PubMed  CAS  Google Scholar 

  • Perner H, Schwarz D, Bruns C et al (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474. doi:10.1007/s00572-007-0116-7

    Article  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. doi:10.1016/j.pbi.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  • Quintero-Ramos M, Espinoza-Victoria D, Ferrera-Cerrato R, Bethlenfalvay G (1993) Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter. Biol Fertil Soils 15:103–106. doi:10.1007/BF00336426

    Article  Google Scholar 

  • Reynolds H, Hartley A, Vogelsang K et al (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167:869–880. doi:10.1111/j.1469-8137.2005.01455.x

    Article  CAS  PubMed  Google Scholar 

  • Ruzicka D, Hausmann N, Barrios-Masias F et al (2011) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil 350:145–162. doi:10.1007/s11104-011-0890-z

    Article  CAS  Google Scholar 

  • Ryan M, Angus J (2003) Arbuscular mycorrhiza in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Ryan M, Tibbett M, Edmonds-Tibbett T et al (2012) Carbon trading for phosphorus gain: the balance between rhizosphere carboxylates and arbuscular mycorrhizal symbiosis in plant phosphorus acquisition. Plant Cell Environ 35:2170–2180. doi:10.1111/j.1365-3040.2012.02547.x

    Article  CAS  PubMed  Google Scholar 

  • Schroeder-Moreno M, Greaver T, Wang S et al (2011) Mycorrhizal-mediated nitrogen acquisition in switchgrass under elevated temperatures and N enrichment. Glob Chang Biol Bioenergy 4:266–276. doi:10.1111/j.1757-1707.2011.01128.x

    Article  CAS  Google Scholar 

  • Sikes B, Maherali H, Klironomos J (2012) Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 121:1791–1800. doi:10.1111/j.1600-0706.2012.20160.x

    Article  Google Scholar 

  • Smith F, Smith S (2011a) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:663–679. doi:10.1007/s11104-011-0865-0

    Google Scholar 

  • Smith S, Smith F (2011b) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250. doi:10.1146/annurev-arplant-042110-103846

    Article  CAS  PubMed  Google Scholar 

  • Smith S, St. John B, Smith F, Bromley J (1986) Effects of mycorrhizal infection on plant growth, nitrogen and phosphorus nutrition in glasshouse-grown Allium cepa L. New Phytol 103:359–373

    Article  Google Scholar 

  • Smith S, Smith F, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524. doi:10.1111/j.1469-8137.2004.01039.x

    Article  Google Scholar 

  • Smith F, Grace E, Smith S (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358. doi:10.1111/j.1469-8137.2008.02753.x

    Article  CAS  PubMed  Google Scholar 

  • Subramanian K, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75. doi:10.1007/s005720050002

    Article  CAS  Google Scholar 

  • Sylvia DM, Neal LH (1990) Nitrogen affects the phosphorus response of VA mycorrhiza. New Phytol 115:303–310. doi:10.1111/j.1469-8137.1990.tb00456.x

    Article  CAS  Google Scholar 

  • Syvertsen J, Graham J (1990) Influence of vesicular arbuscular mycorrhiza and leaf age on net gas exchange of citrus leaves. Plant Physiol 94:1424–1428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Tian C, Kasiborski B, Koul R et al (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187. doi:10.1104/pp. 110.156430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treseder K (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355. doi:10.1111/j.1469-8137.2004.01159.x

    Article  Google Scholar 

  • Treseder K, Allen M (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Tu C, Booker F, Watson D et al (2006) Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Glob Chang Biol 12:793–803. doi:10.1111/j.1365-2486.2006.01149.x

    Article  Google Scholar 

  • Vaast P, Zasoski R (1992) Effects of VA-mycorrhiza and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant Soil 147:31–39. doi:10.1007/BF00009368

    Article  CAS  Google Scholar 

  • Van der Heijden M, Wiemken A, Sanders I (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578. doi:10.1046/j.1469-8137.2003.00688.x

    Article  Google Scholar 

  • Van der Heijden M, Streitwolf-Engel R, Riedl R et al (2006) The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752. doi:10.1111/j.1469-8137.2006.01862.x

    Article  PubMed  Google Scholar 

  • Veiga R, Jansa J, Frossard E, van der Heijden M (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6:e27825. doi:10.1371/journal.pone.0027825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Veresoglou SD, Chen B, Rillig MC (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62. doi:10.1016/j.soilbio.2011.11.018

    Article  CAS  Google Scholar 

  • Walder F, Niemann H, Natarajan M et al (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797. doi:10.1104/pp. 112.195727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walder F, Niemann H, Lehmann MF et al (2013) Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biol Biochem 58:341–344. doi:10.1016/j.soilbio.2012.12.008

    Article  CAS  Google Scholar 

  • Wallace L, McNaughton S, Coughenour M (1982) The effects of clip** and fertilization on nitrogen nutrition and allocation by mycorrhizal and nonmycorrhizal Panicum coloratum L., a C4 grass. Oecologia 54:68–71. doi:10.1007/BF00541110

    Article  Google Scholar 

  • Watts-Williams S, Cavagnaro T (2011) Arbuscular mycorrhizas modify tomato responses to soil zinc and phosphorus addition. Biol Fertil Soils 48:285–294. doi:10.1007/s00374-011-0621-x

    Article  CAS  Google Scholar 

  • Wehner J, Antunes P, Powell J et al (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia Jena 53:197–201. doi:10.1016/j.pedobi.2009.10.002

    Article  Google Scholar 

  • Wellings N, Wearing A, Thompson J (1991) Vesicular-arbuscular mycorrhiza (VAM) improve phosphorus and zinc nutrition and growth of pigeonpea in a vertisol. Aust J Agric Res 42:835–845

    Article  Google Scholar 

  • Wilson G, Hartnett D (1998) Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. Am J Bot 85:1732–1738

    Article  CAS  PubMed  Google Scholar 

  • Wright D, Scholes J, Read D, Rolfe S (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896. doi:10.1111/j.1469-8137.2005.01472.x

    Article  CAS  PubMed  Google Scholar 

  • ** system. Agric Sci China 9:528–535. doi:10.1016/S1671-2927(09)60126-7

    Article  Google Scholar 

  • Yoshida L, Allen E (2001) Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. Am J Bot 88:1430–1436

    Article  CAS  PubMed  Google Scholar 

  • Youpensuk S, Lordkaew S, Rerkasem B (2006) Comparing the effect of arbuscular mycorrhizal fungi on upland rice and Macaranga denticulata in soil with different levels of acidity. Sci Asia 32:121–126

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Steve Houghton for help with the English revision. This work was funded by the Portuguese Ministry of Science and Technology (SFRH/BPD/44913/2008, PTDC/BIA-ECS/122214/2010, PTDC/Agro-Pro/115888/2009) and the Spanish Ministry of Economy and Competitivity (AGL2012-35611).

Conflict of interest

The authors declare to have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Corrêa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corrêa, A., Cruz, C. & Ferrol, N. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. Mycorrhiza 25, 499–515 (2015). https://doi.org/10.1007/s00572-015-0627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0627-6

Keywords

Navigation