Log in

Intensity characteristics of hypergeometric-gaussian type II beams in maritime turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this study, the propagation characteristics of the Hypergeometric-Gaussian type II (HyGG-II) beam in a turbulent maritime atmosphere are investigated theoretically. Using the extended Huygens–Fresnel integral formula, the on-axis average intensity of these beams traveling through maritime turbulence is derived in closed-form under the Rytov method. Also, some special cases of average intensity of the HyGG-II beam are been extracted from the obtained results. The dependence of the on-axis intensity on the parameters of the incident HyGG-II beam and the turbulence strength has been determined. From typical numerical examples, it is shown that the HyGG-II beam loses its dark central spot, when its on-axis intensity reaches a limit value at certain propagation distance zmax, and after that the beam returns to its original hollow shape. For small constant strength turbulence, small parameter hollowness large initial beam waist size and large topological charge, the disappearance speed is slow. The obtained results can be used in the design of an optical wireless communication link design operating in marine atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets is used in the present study.

References

  • Andrews, L.C.: An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. J. Mod. Opt. 39, 1849–1853 (1992)

    Article  ADS  Google Scholar 

  • Andrews, L.C., Phillips, R.L.: Laser Beam Propagation through Random Media. SPIE Press, Washington (1998)

    Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics, seventh (expanded) ed. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel-Laguerre-Gaussian beams and its central intensity traveling a turbulent atmosphere. Opt. Quantum Electron. 50, 305–325 (2018)

    Article  Google Scholar 

  • Chen, J.: Production of confluent hypergeometric beam by computer-generated hologram. Opt. Eng. 50, 024201–024204 (2011)

    Article  ADS  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Evolution of the partially coherent generalized flattened Hermite-Cosh-Gaussian beam through a turbulent atmosphere. Opt. Quantum Electron. 52, 484–500 (2020)

    Article  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Comparative analysis of some Schell-model beams propagating through turbulent atmosphere. Opt. Quantum Electron. 54, 175–191 (2022)

    Article  Google Scholar 

  • Chib, S., Bayraktar, M., Belafhal, A.: Theoretical and computational study of a partially coherent laser beam in a marine environment. Phys. Scr. 98, 015513–015526 (2023a)

    Article  ADS  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Partially coherent beam propagation in turbid tissue-like scattering medium. Opt. Quantum Electron. 55, 602–617 (2023b)

    Article  Google Scholar 

  • Cui, L., Xue, B., Cao, X., Zhou, F.: Atmospheric turbulence MTF for optical waves’ propagation through anisotropic non-Kolmogorov atmospheric turbulence. Opt. Laser Technol. 63, 70–75 (2014)

    Article  ADS  Google Scholar 

  • Ebrahim, A.A.A., Belafhal, A.: Effect of the turbulent biological tissues on the propagation properties of Coherent Laguerre-Gaussian beams. Opt. Quantum Electron. 53, 179–196 (2021)

    Article  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products, 5th edn. Academic Press, New York (2005)

    Google Scholar 

  • Grayshan, K.J., Vetelino, F.S., Young, C.Y.: A marine atmospheric spectrum for laser propagation. Waves Random Complex Media 18, 173–184 (2008)

    Article  ADS  MATH  Google Scholar 

  • Hill, R.J.: Spectra of fluctuations in refractivity, temperature, humidity, and the temperature-humidity cospectrum in the inertial and dissipation ranges. Radio Sci. 13, 953–961 (1978)

    Article  ADS  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double–half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quantum Electron. 52, 201–207 (2020)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., El Halba, M., Belafhal, A.: Effect of a turbulent atmosphere on the propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams. Opt. Quantum Electron. 54, 719–732 (2022)

    Article  Google Scholar 

  • Karimi, E., Zito, G., Piccirillo, B., Marrucci, L., Santamato, E.: Hypergeometric-Gaussian modes. Opt. Lett. 32, 3053–3055 (2007)

    Article  ADS  Google Scholar 

  • Karimi, E., Piccirillo, B., Marrucci, L., Santamato, E.: Improved focusing with Hypergeometric-gaussian type II optical modes. Opt. Express 16, 21069–21075 (2008)

    Article  ADS  Google Scholar 

  • Khannous, F., Belafhal, A.: A new study of turbulence effects in the marine environment on the intensity distributions of flat-topped Gaussian beams. Optik 127, 8194–8202 (2016)

    Article  ADS  Google Scholar 

  • Khannous, F., Belafhal, A.: A new atmospheric spectral model for the marine environment. Optik 153, 86–94 (2018)

    Article  ADS  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Li’s flattened Gaussian beams propagation in maritime atmospheric turbulence. Phys. Chem. News 73, 73–82 (2014)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: On-axis average intensity of Hypergeometric-Gaussian type propagating in a turbulent atmosphere. J. Mater. Environ. Sci. 6, 2550–2556 (2015)

    Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the Hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. Phys. 54, 194–204 (2016a)

    Article  MathSciNet  Google Scholar 

  • Khannous, F., Ebrahim, A.A.A., Belafhal, A.: Closed form of a kurtosis parameter of a hypergeometric-Gaussian type-II beam. Chin. Phys. B 25, 044206–044212 (2016b)

    Article  Google Scholar 

  • Korotkova, O., Avramov-Zamurovic, S., Malek-Madani, R., Nelson, C.: Probability density function of the intensity of a laser beam propagating in the maritime environment. Opt. Express 19, 20322–20331 (2011)

    Article  ADS  Google Scholar 

  • Kotlyar, V.V., Skidanov, R.V., Khonina, S.N., Soifer, V.A.: Hypergeometric modes. Opt. Lett. 32, 742–744 (2007)

    Article  ADS  Google Scholar 

  • Kotlyar, V.V., Kovalev, A.A., Skidanov, R.V., Khonina, S.N., Turunen, J.: Generating hypergeometric laser beams with a diffractive optical element. Appl. Opt. 47, 6124–6133 (2008)

    Article  ADS  Google Scholar 

  • Li, Y., Zhang, Y.: OAM mode of the Hankel-Bessel vortex beam in weak to strong turbulent link of marine-atmosphere. Laser Phys. 27, 045201–045208 (2017)

    Article  ADS  Google Scholar 

  • Liu, L., Liu, Y., Chang, H., Huang, J., Zhu, X., Cai, Y., Yu, J.: Second-order statistics of self-splitting structured beams in oceanic turbulence. Photonics 10, 339–350 (2023)

    Article  Google Scholar 

  • Lu, L., Wang, Z., Cai, Y.: Propagation properties of phase-locked radially-polarized vector fields array in turbulent atmosphere. Opt. Express 29, 16833–16844 (2021)

    Article  ADS  Google Scholar 

  • Padgett, M.J.: Orbital angular momentum 25 years on. Opt. Express 25, 11265–11274 (2017)

    Article  ADS  Google Scholar 

  • Qin, Y., Yang, H., Jiang, P., Caiyang, W., Zhou, M., Mao, S., Cao, B.: Research for propagation properties of LG beam through Cassegrain antenna system in a turbulent atmosphere. Opt. Express 28, 14436–14447 (2020)

    Article  ADS  Google Scholar 

  • Skidanov, R.V., Khonina, S.N., Morozov, A.A.: Optical rotation of microparticles in hypergeometric beams formed by diffraction optical elements with multilevel microrelief. J. Opt. Technol. 80, 585–589 (2013)

    Article  Google Scholar 

  • Xu, Q., Zhao, L., Xu, Y.: Propagation properties of partially coherent radially and azimuthally polarized vortex beams in turbulent atmosphere. Optik 265, 169542–169555 (2022)

    Article  ADS  Google Scholar 

  • Yousefi, M., Golmohammady, S., Mashal, A., Kashani, F.D.: Analyzing the propagation behavior of scintillation index and bit error rate of a partially coherent flat-topped laser beam in oceanic turbulence. JOSA A 32, 1982–1992 (2015)

    Article  ADS  Google Scholar 

  • Zhang, J., Kou, L., Yang, Y., He, F., Duan, Z.: Monte-Carlo-based optical wireless underwater channel modeling with oceanic turbulence. Opt. Commun. 475, 126214–126218 (2020)

    Article  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Belafhal.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Consent to participate

Informed consent was obtained from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khannous, F., Chib, S. & Belafhal, A. Intensity characteristics of hypergeometric-gaussian type II beams in maritime turbulence. Opt Quant Electron 55, 1108 (2023). https://doi.org/10.1007/s11082-023-05359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05359-7

Keywords

Navigation