Log in

Effect of a turbulent atmosphere on the propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, the paraxial propagation of a partially coherent vortex cosine-hyperbolic-Gaussian beam (PCvChGB) in a turbulent atmosphere is investigated theoretically. The analytical expression of the average intensity for a PCvChGB propagating in a turbulent atmosphere is derived based on the Huygens–Fresnel integral and Rytov method. Numerical examples illustrating the effects of turbulence on beam propagation under various initial beam parameters and coherence length are presented. It is found that a PCvChGB spreads faster when the coherence length σ is smaller. The beam can keep its initial hollow dark profile unchanged within a short propagation range, and then is transformed into a solid Gaussian-like beam in the far field. The beam conversion speed is faster at stronger turbulence, larger vortex charge M and smaller decentered b, initial coherence length or wavelength. The obtained results could be beneficial for applications of PCvChGB in optical communications, remote sensing, and atom optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, L., Begersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. a. 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  • Andrews, L.C., Philips, R.L.: Laser beam propagation through random media. SPIE Press, Washington (1998)

    Google Scholar 

  • Appl, P.: Y. Cai, “Propagation of various flat-topped beams in a turbulent atmosphere.” J. Opt. A 8, 537–545 (2006)

    Article  Google Scholar 

  • Baykal, Y.: “Correlation and structure functions of Hermite-sinusoidal-Gaussian beams in the turbulent atmosphere.” J. Opt. Am. A Opt. Imag. Sci. Vis. 21, 1290–1299 (2004)

    Article  ADS  Google Scholar 

  • Baykal, Y., Eyyuboğlu, H.T., Cai, Y.: Scintillations of partially coherent multiple Gaussian beams in turbulence. Appl. Opt. 48, 1943–1954 (2009)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hennani, S., Ez-zariy, L., Chafiq, A., Khouilid, M.: Propagation of truncated Bessel-modulated Gaussian beams in turbulent atmosphere. Phys. Chem. News 62, 36–43 (2011)

    Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials and their applications. Adv. Math. Mod. Appl. 5, 313–319 (2020)

    Google Scholar 

  • Bishop, A.I., Nieminen, T.A., Heckenberg, N.R., Rubinsztein, H.: Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett. 92(19), 198104–198107 (2004)

    Article  ADS  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Nebdi, H., Belafhal, A.: « Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam”. Chin. Phys. B 25(6), 064208 (2016)

    Article  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel-Laguerre-Gaussian beams and its central intensity traveling in a turbulent atmosphere. Opt. Quant. Elect. 50, 305–325 (2018)

    Article  Google Scholar 

  • Cai, Y., He, S.: Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 1353–1367 (2006)

    Article  ADS  Google Scholar 

  • Cheng, F., Cai, Y.: Propagation factor of a truncated partially coherent flat-topped beam in turbulent atmosphere. Opt. Commun. 284, 30–37 (2011)

    Article  ADS  Google Scholar 

  • Chu, X.: Arbitrary moments of elliptical Gaussian-Schell beam in turbulent atmosphere. J. Opt. Am. A: Opt. Imag. Sci. Vis. 28, 917–923 (2011)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T.: Hermite-cosh-Gaussian laser beam and its propagation characteristics in turbulent atmosphere. J. Opt. Am. A: Opt. Imag. Sci. Vis. 22, 1527–1535 (2005)

    Article  ADS  Google Scholar 

  • Eyyuboğlu, H.T., Baykal, Y.: Average intensity and spreading of cosh-Gaussian beams in the turbulent atmosphere. Appl. Opt. 44, 976–983 (2005)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127(23), 11534–11543 (2016). https://doi.org/10.1016/j.ijleo.2016.09.073

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Product, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double–half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quant. Elect. 52, 201–207 (2020a)

    Article  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties in Fractional Fourier Transform optical system. Opt. Quant. Elect. 52, 296–302 (2020b)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Propagation of vortex cosine-hyperbolic Gaussian beams in atmospheric turbulence. Opt. Quant. Elect. 53(7), 383–398 (2021a)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., Yaalou, M., Belafhal, A.: Effects of turbulent atmosphere on propagation properties of vortex Hermite-cosine-hyperbolic-Gaussian beams. Opt. Quant. Elect. 53(11), 624–638 (2021b)

    Article  Google Scholar 

  • Hricha, Z., El Halba, E.M., Lazrek, M., Belafhal, A.: Focusing properties and focal shift of a vortex cosine-hyperbolic Gaussian beam. Opt. Quant. Elect. 53(8), 449–465 (2021c)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., El Halba, E., Belafhal, A.: Parametric characterization of vortex cosine-hyperbolic-Gaussian beams. Results Opt. 5, 100120–100127 (2021d)

    Article  Google Scholar 

  • Huang, H., **e, G., Yan, Y., Ahmed, N., Ren, Y., Yue, Y., Rogawski, D., Willner, M.J., Erkmen, B.I., Birnbaum, K.M., Dolinar, S.J., Lavery, M.P.J., Padgett, M.J., Tur, M., Willne, A.E.: 100Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength. Opt. Lett. 39(2), 197–200 (2014)

    Article  ADS  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. of Phys. 54, 194–220 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Kinani, A., Ez-zariy, L., Chafiq, A., Nebdi, H., Belafhal, A.: Effects of atmospheric turbulence on the propagation of Li’s flat-topped optical beams. Phys. Chem. News 61, 24–33 (2011)

    Google Scholar 

  • Kuga, T., Torii, Y., Shiokawa, N., Hirano, T., Shimizu, Y., Sasada, H.: Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78, 4713–4716 (1997)

    Article  ADS  Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Partially coherent vortex cosh-Gaussian beam and its paraxial propagation. Opt. Quant. Elect. 53(12), 694–710 (2021)

    Article  Google Scholar 

  • Lazrek, M., Hricha, Z., Belafhal, A.: Propagation properties of vortex cosine-hyperbolic-Gaussian beams through oceanic turbulence. Opt. Quant. Elect. 54(3), 172–185 (2022)

    Article  Google Scholar 

  • Liu, D., Wang, Y., Yin, H.: Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere. Opt. Laser Technol. 78, 95–100 (2016)

    Article  ADS  Google Scholar 

  • Liu, X., Liu, L., Chen, Y., Cai, Y.: Partially coherent vortex beam: from theory to experiment. Vort. Dyn. Opt. Vort. 11, 275–96 (2017)

    Google Scholar 

  • M. Abramowitz, I.A. Stegun (Eds.), “Handbook of Mathematical Functions”. Nat. Bureau of Standards Washington, DC (1964).

  • Noriega-Manez, R.J., Gutiérrez-Vega, J.C.: Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere. Opt. Express 15, 16328–16341 (2007)

    Article  ADS  Google Scholar 

  • Paterson, L., MacDonald, M.P., Arlt, J., Sibbett, W., Bryant, P.E., Dholakia, K.: Controlled rotation of optically trapped microscopic particles. Sci. 292(5518), 912–914 (2001)

    Article  ADS  Google Scholar 

  • Saad, F., El Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Elect. 49, 94–106 (2018)

    Article  Google Scholar 

  • Taherabadi, G., Alavynejad, M., Kashani, F., Ghafary, B., Yousefi, M.: Changes in the spectral degree of polarization of a partially coherent dark hollow beam in the turbulent atmosphere for on-axis and off-axis propagation point. Opt. Commun. 285, 2017–2021 (2012)

    Article  ADS  Google Scholar 

  • Wang, Z., Lin, Q., Wang, Y.: Control of atomic rotation by elliptical hollow beam carrying zero angular momentum. Opt. Commun. 240, 357–362 (2004)

    Article  ADS  Google Scholar 

  • Wang, F., Cai, Y., Eyyboğlu, H.T., Baykal, Y.: Average Intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere. Prog. Electromag. Res. PIER 103, 33–56 (2010)

    Article  Google Scholar 

  • Wang, H., Liu, D., Zhou, Z., Tong, S., Song, Y.: Propagation properties of radially polarized partially coherent beam in turbulent atmosphere. Opt. Lasers Eng. 49, 1238–1244 (2011)

    Article  Google Scholar 

  • Wang, F., Liu, X., Cai, Y.: Propagation of partially coherent beam in turbulent atmosphere: a review. Prog. Electromag. Res. 150, 123–143 (2015)

    Article  Google Scholar 

  • Wang, J., Yang, J.Y., Fazal, I.M., Ahmed, N., Yan, Y., Huang, H., Ren, Y., Yue, Y., Dolinar, S., Tur, M., Willner, A.E.: Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6(7), 488–496 (2012). https://doi.org/10.1038/nphoton.2012.138

    Article  ADS  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of dark and Antidark Gaussian beams in a turbulent atmosphere. Opt. Quant. Elect. 51, 255–266 (2019)

    Article  Google Scholar 

  • Zeng, J., Lin, R., Liu, X., Zhao, C., Cai, Y.: Review on partially coherent vortex beams. Front. Optoelectron. (2019). https://doi.org/10.1007/s12200-019-09.1x

    Article  Google Scholar 

  • Zhu, K., Zhou, G., Li, X., Zheng, X., Tang, H.: Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt. Express 16(26), 21315 (2008). https://doi.org/10.1364/OE.16.021315

    Article  ADS  Google Scholar 

  • Zhu X, Wu G, Luo B: Propagation of elegant vortex Hermite-Gaussian beams in turbulent atmosphere. In: Optical Communication, Optical Fiber Sensors, and Optical Memories for Big Data Storage 2016 (Vol. 10158, pp. 109-114). SPIE.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Hricha or A. Belafhal.

Ethics declarations

Conflict of interests

The authors declare there is no conflicts of interest, financial or non-financial, for this research work presented in this manuscript.

Ethical approval

We declare that this manuscript is original, has not been published before, and is not currently considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent to participate

Informed consent was obtained from all authors.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hricha, Z., Lazrek, M., Halba, M.E. et al. Effect of a turbulent atmosphere on the propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams. Opt Quant Electron 54, 719 (2022). https://doi.org/10.1007/s11082-022-04064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04064-1

Keywords

Navigation