Log in

Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The so-called Generalized Bessel–Laguerre–Gaussian (GBLG) beam is introduced, in this paper, and an approximate formula of the average axial intensity of its propagation through a turbulent atmosphere is investigated using the extended Huygens–Fresnel diffraction integral in the paraxial approximation and on the Rytov theory. The analytical expression elaborated is regarded as the main result of this work. Several above studies are derived here as special cases from our research. The impact of some parameters, including incident beam parameters and turbulence strength, on the distribution of the axial intensity of the GBLG beam and on the profiles of some particular beams through a turbulent atmosphere are carried out numerically in the paper. From our numerical results-, the propagation of Gaussian beams, Laguerre–Gaussian beams and Bessel–Gaussian beams through the considered medium are deduced as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andrews, L.C., Philips, R.L.: Laser Beam Propagation Through Random Media. SPIE, Bellingham (1998)

    Google Scholar 

  • Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications, p. 99. SPIE Press, Washington (2001)

    Book  Google Scholar 

  • Ata, Y., Baykal, Y.: Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere. Opt. Eng. 56, 104107–104110 (2017)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hennani, S., Ez-zariy, L., Chafiq, A., Khouilid, M.: Propagation of truncated Bessel-modulated Gaussian beams in turbulent atmosphere. Phys. Chem. News 62, 36–43 (2011)

    Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Nebdi, H., Belafhal, A.: Effect of turbulent atmosphere on the on-axis average intensity of Pearcey-Gaussian beam. Chin. Phys. B. (2016). https://doi.org/10.1088/1674-1056/25/6/064208

    Google Scholar 

  • Cang, J., Zhang, Y.: Axial intensity distribution of truncated Bessel-Gauss beams in a turbulent atmosphere. Optik 121, 239–245 (2010)

    Article  ADS  Google Scholar 

  • Eyyuboglu, H.T., Hardalaç, F.: Opt. Laser Technol. 40, 343–351 (2008)

    Article  ADS  Google Scholar 

  • Ez-zariy, L., Ebrahim, A.A.A., Belafhal, A.: Behavior of the central intensity of a Hollow-Gaussian beam against the turbulence. Optik 127, 11522–11528 (2016)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Khannous, F., Belafhal, A.: A new study of turbulence effects in the marine environment on the intensity distributions of flat-topped Gaussian beams. Optik 127, 8194–8202 (2016)

    Article  ADS  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Li’s flattened Gaussian beams propagation in maritime atmospheric turbulence. Phys. Chem. News 73, 73–82 (2014)

    Google Scholar 

  • Kinani, A., Ez-zariy, L., Chafiq, A., Nebdi, H., Belafhal, A.: Effects of atmospheric turbulence on the propagation of Li’s flat-topped optical beams. Phys. Chem. News 61, 24–33 (2011)

    Google Scholar 

  • Korotkova, O., Gbur, G.: Propagation of beams with any spectral, coherence, and polarization properties in turbulent atmosphere. Proc-SPIE. (2007). https://doi.org/10.1117/12.700465

    Google Scholar 

  • Li, Y., Lee, H., Emil, W.: New generalized Bessel–Gaussian beams. Opt. Soc. Am. A 21, 640–646 (2004)

    Article  ADS  Google Scholar 

  • Liu, X., Liang, C., Yuan, Y., Cai, Y., Eyyuboglu, H.T.: Scintillation properties of a truncated flat-topped beam in a weakly turbulent atmosphere. Opt. Laser Technol. 45, 587–592 (2013)

    Article  ADS  Google Scholar 

  • Mei, Z., Zhao, D.: Nonparaxial analysis of vectorial Laguerre–Bessel–Gaussian beams. Opt. Express 15, 11942–11951 (2007)

    Article  ADS  Google Scholar 

  • Nie, Z., Shi, G., Li, D., Zhang, X., Wang, Y., Song, Y.: Tight focusing of a radially polarized Laguerre–Bessel–Gaussian beam and its application to manipulation of two types of particle. Phys. Lett. A 379, 857–863 (2015)

    Article  Google Scholar 

  • Noriega-Manez, R.J., Gutiérrez-Vega, J.C.: Rytov theory for Helmholtz-Gauss beams in turbulent atmosphere. Opt. Express 15, 16328–16341 (2007)

    Article  ADS  Google Scholar 

  • Saad, F., Hricha, Z., Khouilid, M., Belafhal, A.: A theoretical study of the Fresnel diffraction of Laguerre–Bessel–Gaussian beam by a helical axicon. Optik 149, 416–422 (2017)

    Article  ADS  Google Scholar 

  • Tovar, A.A.: Propagation of Laguerre–Bessel–Gaussian beams. J. Opt. Soc. Am. A 17, 2010–2018 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Wang, L.G., Zheng, W.W.: The effect of atmospheric turbulence on the propagation properties of optical vortices formed by using coherent laser beam arrays. J. Opt. A. (2009). https://doi.org/10.1088/1464-4258/11/6/065703

    Google Scholar 

  • Wang, F., Cai, Y., Eyyuboglu, H.T., Baykal, Y.: Average intensity and spreading of partially coherent standard and Elegant Laguerre-Gaussian beam in turbulent atmosphere. Prog. Electrom. Res. 103, 33–56 (2010)

    Article  Google Scholar 

  • Wen, J.J., Breazeale, M.A.: A diffraction beam field expressed as the superposition of Gaussian beams. J. Acoust. Soc. Am. 83, 1752–1756 (1988)

    Article  ADS  Google Scholar 

  • Wen, W., Chu, X., Ma, H.: The propagation of a combining Airy beam in turbulence. Opt. Commun. 336, 326–329 (2015)

    Article  ADS  Google Scholar 

  • **u-bo, M.A., En-bang, L.I.: Opto- Elect. Eng. 6, 011 (2009)

    Google Scholar 

  • Ya-Qing, L., Zhen-Sen, W., Ming-Jun, W.: Partially coherent Gaussian—Schell model pulse beam propagation in slant atmospheric turbulence. Chin. Phys. B. (2014). https://doi.org/10.1088/1674-1056/23/6/064216

    Google Scholar 

  • Zhou, P., Liu, Z., Xu, X., Chu, X.: Propagation of coherently combined flattened laser beam array in turbulent atmosphere. Opt. Laser Technol. 41, 403–407 (2009)

    Article  ADS  Google Scholar 

  • Zhu, K.C., Zhou, G.Q., Li, X.G., Li, X.G., Zheng, X.J., Tang, H.Q.: Opt. Express 16, 9897–9905 (2012)

    Article  ADS  Google Scholar 

  • Zhu, Z., Liu, L., Wang, F., Cai, Y.: Evolution properties of a Laguerre-Gaussian correlated Schell-model beam propagating in uniaxial crystals orthogonal to the optical axis. J. Opt. Soc. Am. A 32, 374–380 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Belafhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boufalah, F., Dalil-Essakali, L., Ez-zariy, L. et al. Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity travelling a turbulent atmosphere. Opt Quant Electron 50, 305 (2018). https://doi.org/10.1007/s11082-018-1573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-018-1573-2

Keywords

Navigation