Log in

Propagation of General Model vortex higher-order cosh-Gaussian beam in maritime turbulence

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The propagation of General Model vortex Higher-order cosh-Gaussian beam (GMvHchGB) in maritime atmospheric turbulence has been studied analytically by the extended Huygens-Fresnel principle. Based on the derived formula, we performed numerical simulations to study the impact of maritime atmospheric turbulence on the properties of this beam under various beam parameter settings. GMvHchGB cannot keep its shape unchanged when it travels a long distance through this medium. The impact of the incident parameters as Gaussian waist, Cosh parameter, hollowness, and order of the beam are numerically analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

No datasets is used in the present study.

References

  • Andrews, L.C., Philips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press, Washington (1998)

    Google Scholar 

  • Balykin, V.I., Letokhov, V.S.: The possibility of deep laser focusing of an atom beam into the Å-region. Opt. Commun. 64, 151–156 (1987)

    Article  ADS  Google Scholar 

  • Baykal, Y.: Higher-order laser beam scintillation in weakly turbulent marine atmospheric medium. JOSA A 33, 758–763 (2016)

    Article  ADS  Google Scholar 

  • Belafhal, A., Hricha, Z., Dalil-Essakali, L., Usman, T.: A note on some integrals involving Hermite polynomials encountered in caustic optics. Adv. Math. Models App. 5, 313–319 (2020)

    Google Scholar 

  • Belafhal, A., Chib, S., Khannous, F., Usman, T.: Evaluation of integral transforms using special functions with applications to biological tissues. Comput. Appl. Math. 40, 156–178 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  • Born, M., Wolf, E.: Principles of Optics, Seventh (expanded) Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  • Boufalah, F., Dalil-Essakali, L., Ez-zariy, L., Belafhal, A.: Introduction of generalized Bessel–Laguerre–Gaussian beams and its central intensity traveling a turbulent atmosphere. Opt. Quant. Electron. 50, 305–325 (2018)

    Article  Google Scholar 

  • Cai, Y., He, S.: Propagation of various dark hollow beams in a turbulent atmosphere. Opt. Express 14, 1353–1367 (2006)

    Article  ADS  Google Scholar 

  • Cai, Y., Lu, X., Lin, Q.: Hollow Gaussian beams and their propagation properties. Opt. Lett. 28, 1084–1086 (2003)

    Article  ADS  Google Scholar 

  • Cheng, M., Guo, L., Zhang, Y.: Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels. Opt. Express 23, 32606–32621 (2015)

    Article  ADS  Google Scholar 

  • Chib, S., Dalil-Essakali, L., Belafhal, A.: Comparative analysis of some Schell-model beams propagating through turbulent atmosphere. Opt. Quant. Electron. 54, 175–191 (2022)

    Article  Google Scholar 

  • Chib, S., Bayraktar, M., Belafhal, A.: Theoretical and computational study of a partially coherent laser beam in a marine environment. Phys. Scr. 98, 015513–015526 (2023)

    Article  ADS  Google Scholar 

  • Cui, X., Yin, X., Chang, H., Sun, Z., Wang, Y., Tian, Q., Wu, G., **n, X.: Analysis of the orbital angular momentum spectrum for Laguerre–Gaussian beams under moderate-to-strong marine-atmospheric turbulent channels. Opt. Commun. 426, 471–476 (2018)

    Article  ADS  Google Scholar 

  • Ebrahim, A.A.A., Belafhal, A.: Effect of the turbulent biological tissues on the propagation properties of Coherent Laguerre-Gaussian beams. Opt. Quant. Electron. 53, 179–196 (2021)

    Article  Google Scholar 

  • Ebrahim, A.A.A., Saad, F., Swillam, M.A., Belafhal, A.: Propagation of the kurtosis parameter of Hollow higher-order Cosh Gaussian beams through paraxial optical ABCD system. Opt. Quant. Electron. 54, 1–12 (2022)

    Article  Google Scholar 

  • Ebrahim, A.A.A., Swillam, M.A., Belafhal, A.: Atmospheric turbulent effects on the propagation properties of a General Model vortex Higher-order cosh-Gaussian beam. Opt. Quant. Electron. 55, 1–13 (2023)

    Article  Google Scholar 

  • Eyyuboğlu, H.T., Baykal, Y., Sermutlu, E.: Convergence of general beams into Gaussian intensity profiles after propagation in turbulent atmosphere. Opt. Commun. 265, 399–405 (2006)

    Article  ADS  Google Scholar 

  • Ez-Zariy, L., Boufalah, F., Dalil-Essakali, L., Belafhal, A.: Effects of a turbulent atmosphere on an apertured Lommel-Gaussian beam. Optik 127, 11534–11543 (2016)

    Article  ADS  Google Scholar 

  • Friehe, C.A., La Rue, J.C., Champagne, F.H., Gibson, C.H., Dreyer, G.F.: Effects of temperature and humidity fluctuations on the optical refractive index in the marine boundary layer. J. Opt. Soc. Am. 65, 1502–1511 (1975)

    Article  ADS  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  • Grayshan, K.J., Vetelino, F.S., Young, C.Y.: A marine atmospheric spectrum for laser propagation. Wave Random Media 18, 173–184 (2008)

    Article  ADS  MATH  Google Scholar 

  • Hricha, Z., Yaalou, M., Belafhal, A.: Intensity characteristics of double–half inverse Gaussian hollow beams through turbulent atmosphere. Opt. Quant. Electron. 52, 201–207 (2020)

    Article  Google Scholar 

  • Hricha, Z., Lazrek, M., El Halba, M., Belafhal, A.: Effect of a turbulent atmosphere on the propagation properties of partially coherent vortex cosine-hyperbolic-Gaussian beams. Opt. Quant. Electron. 54, 719–732 (2022)

    Article  Google Scholar 

  • Khannous, F., Belafhal, A.: A new atmospheric spectral model for the marine environment. Optik 153, 86–94 (2018)

    Article  ADS  Google Scholar 

  • Khannous, F., Boustimi, M., Nebdi, H., Belafhal, A.: Theoretical investigation on the Hollow Gaussian beams propagating in atmospheric turbulent. Chin. J. Phys. 54, 194–220 (2016)

    Article  MathSciNet  Google Scholar 

  • Mei, Z., Zhao, D.: Controllable dark-hollow beams and their propagation characteristics. JOSA A 22, 1898–1902 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • **, Y.J., Jian, G.W., Feng, W.H., Quan, L., Yu-Zhu, W.: Generation of dark hollow beams and their applications in laser cooling of atoms and all optical-type Bose-Einstein condensation. Chin. Phys. Soc. 11, 1157–1169 (2002)

    Article  ADS  Google Scholar 

  • Saad, F., Belafhal, A.: Propagation properties of Hollow higher-order cosh-Gaussian beams in quadratic index medium and Fractional Fourier transform. Opt. Quant. Electron. 53, 28–43 (2021)

    Article  Google Scholar 

  • Saad, F., El Halba, E.M., Belafhal, A.: A theoretical study of the on-axis average intensity of generalized spiraling Bessel beams in a turbulent atmosphere. Opt. Quant. Electron. 49, 1–12 (2017)

    Article  Google Scholar 

  • Saad, F., Ebrahim, A.A.A., Belafhal, A.: Beam propagation factor of Hollow higher-order Cosh-Gaussian beams. Opt. Quant. Electron. 54, 1–10 (2022)

    Article  Google Scholar 

  • Yaalou, M., El Halba, E.M., Hricha, Z., Belafhal, A.: Propagation characteristics of dark and antidark Gaussian beams in turbulent atmosphere. Opt. Quant. Electron. 51, 1–10 (2019)

    Article  Google Scholar 

  • Zhang, Y., Shan, L., Li, Y., Yu, L.: Effects of moderate to strong turbulence on the Hankel-Bessel-Gaussian pulse beam with orbital angular momentum in the marine-atmosphere. Opt. Express 25, 33469–33479 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

No funding is received from any organization for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors performed simulations, data collection and analysis and commented the present version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Belafhal.

Ethics declarations

Competing interests

The authors have no financial or proprietary interests in any material discussed in this article.

Ethical approval

This article does not contain any studies involving animals or human participants performed by any of the authors. We declare this manuscript is original, and is not currently considered for publication elsewhere. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Consent for publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Consent to participate

Informed consent was obtained from all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chib, S., Khannous, F. & Belafhal, A. Propagation of General Model vortex higher-order cosh-Gaussian beam in maritime turbulence. Opt Quant Electron 55, 971 (2023). https://doi.org/10.1007/s11082-023-05239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05239-0

Keywords

Navigation