Log in

A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To be more biocompatible, poly(N-isopropyl acrylamide) (PNIPAM) hydrogel, as a typical temperature-sensitive hydrogel, is expected to be linked with other materials of excellent biocompatibility. For this propose, poly(N-isopropyl acrylamide)-block-poly(3-O-allyl-α-D-glucose) (PNIPAM-b-POAG), a new diblock copolymer, was successfully synthesized from N-isopropyl acrylamide (NIPAM) and 3-O-allyl-1,2:5,6-di-O-isopropynylene-α-D-glucose (OAIG) via reversible addition-fragmentation chain transfer (RAFT) polymerization in the presence of cumyl dithiobenzoate (CDB). PNIPAM-b-POAG was characterized byFourier transform infrared (FT-IR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, and gel permeation chromatography (GPC). The critical micelle concentration (CMC) of the copolymer was 0.045 mg/ml measured by fluorescence spectroscopy. The copolymer solution exhibited a reversible sol-gel phase transitions with the increase or decrease of temperature. An in situ gel formed rapidly after subcutaneously injecting the copolymer solution into a Sprague Dawley (SD) rat, which indicated the copolymer has a good injectable property. The in vitro release result showed that methylene blue (MB) as a model was sustainably released by the temperature-sensitive PNIPAM-b-POAG diblock copolymer at 37 °C within 120 h. The copolymer showed no apparent cytotoxicity on L929 cells by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The novel temperature-sensitive hydrogel is a promising candidate for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222. doi:10.1016/j.progpolymsci.2004.08.003

    Article  CAS  Google Scholar 

  2. Dayananda K, He C, Park DK, Park TG, Lee DS (2008) pH- and temperature-sensitive multiblock copolymer hydrogels composed of poly(ethylene glycol) and poly(amino urethane). Polymer 49:4968–4973. doi:10.1016/j.polymer.2008.09.033

    Article  CAS  Google Scholar 

  3. Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2005) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360. doi:10.1002/adma.200501612

    Article  Google Scholar 

  4. Wang Y, Chen D (2012) Preparation and characterization of a novel stimuli-responsive nanocomposite hydrogel with improved mechanical properties. J Colloid Interf Sci 372:245–251. doi:10.1016/j.jcis.2012.01.041

    Article  CAS  Google Scholar 

  5. Herber S, Olthuis W, Bergveld P, Berg AVD (2004) Exploitation of a pH-sensitive hydrogel disk for CO 2 detection. Sens Actuators B 103:284–289. doi:10.1016/j.snb.2004.04.113

    Article  CAS  Google Scholar 

  6. He C, Kim SW, Lee DS (2008) In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 127:189–207. doi:10.1016/j.jconrel.2008.01.005

    Article  CAS  Google Scholar 

  7. Huynh DP, Shim WS, Kim JH, Lee DS (2006) pH/temperature sensitive poly(ethylene glycol)-based biodegradable polyester block copolymer hydrogels. Polymer 47:7918–7926. doi:10.1016/j.polymer.2006.09.021

    Article  CAS  Google Scholar 

  8. Huynh CT, Nguyen QV, Kang SW, Lee DS (2012) Synthesis and characterization of poly(amino urea urethane)-based block copolymer and its potential application as injectable pH/temperature-sensitive hydrogel for protein carrier. Polymer 53:4069–4075. doi:10.1016/j.polymer.2012.07.031

    Article  CAS  Google Scholar 

  9. Song J, Yu R, Wang L, Zheng S, Li X (2011) Poly(N-vinylpyrrolidone)-grafted poly(N-isopropylacrylamide) copolymers: synthesis, characterization and rapid deswelling and reswelling behavior of hydrogels. Polymer 52:2340–2350. doi:10.1016/j.polymer.2011.03.038

    Article  CAS  Google Scholar 

  10. Zhang B, He W, Li L, Sun X, Li W, Zhang K (2010) Reducibly degradable hydrogels of PNIPAM and PDMAEMA: synthesis, stimulus-response and drug release. J Polym Sci Part A Polym Chem 48:3604–3612. doi:10.1002/pola.24141

    Article  CAS  Google Scholar 

  11. JagadeeshBabu PE, Sures Kumar R, Maheswari B (2011) Synthesis and characterization of temperature sensitive P-NIPAM macro/micro hydrogels. Colloids Surf A Physicochem Eng Asp 384:466–472. doi:10.1016/j.colsurfa.2011.05.004

    Article  CAS  Google Scholar 

  12. Zadražil A, Štěpánek F (2010) Investigation of thermo-responsive optical properties of a composite hydrogel. Colloids Surf A Physicochem Eng Asp 372:115–119. doi:10.1016/j.colsurfa.2010.09.039

    Article  Google Scholar 

  13. Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T (1998) Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-D, L-lactide). J Control Release 55:87–98. doi:10.1016/ S0168-3659(98)00023-6

    Article  CAS  Google Scholar 

  14. Hamcerencu M, Desbrieres J, Popa M, Riess G (2012) Original stimuli-sensitive polysaccharide derivatives/N-isopropylacrylamide hydrogels. Role of polysaccharide backbone. Carbohydr Polym 89:438–447. doi:10.1016/j.carbpol.2012.03.026

    Article  CAS  Google Scholar 

  15. Varghese JM, Ismail YA, Lee CK, Shin KM, Shin MK, Kim SI, So I, Kim SJ (2008) Thermoresponsive hydrogels based on poly(N-isopropylacrylamide)/chondroitin sulfate. Sens Actuators B 135:336–341. doi:10.1016/j.snb.2008.09.001

    Article  CAS  Google Scholar 

  16. Hu YQ, Kim MS, Kim BS, Lee DS (2007) Synthesis and pH-dependent micellization of 2-(diisopropylamino)ethyl methacrylate based amphiphilic diblock copolymers via RAFT polymerization. Polymer 48:3437–3443. doi:10.1016/j.polymer.2007.04.011

    Article  CAS  Google Scholar 

  17. Smith AE, Xu X, McCormick CL (2010) Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog Polym Sci 35:45–93. doi:10.1016/j.progpolymsci.2009.11.005

    Article  CAS  Google Scholar 

  18. Keddie DJ, Moad G, Rizzardo E, Thang SH (2012) RAFT Agent Design and Synthesis. Macromolecules 45:5321–5342. doi:10.1021/ma300410v

    Article  CAS  Google Scholar 

  19. **n X, Wang Y, Liu W (2005) Synthesis of zwitterionic block copolymers via RAFT polymerization. Eur Polym J 41:1539–1545. doi:10.1016/j.eurpolymj.2005.01.015

    Article  CAS  Google Scholar 

  20. Torrente S, Noya B, Branchadell V, Alonso R (2003) Intra- and Intermolecular 1,3-Dipolar Cycloaddition of Sugar Ketonitrones with Mono-, Di-, and Trisubstituted Dipolarophiles. J Org Chem 68:4772–4783. doi:10.1021/jo034159g

    Article  CAS  Google Scholar 

  21. Carlucci M, Kierzek E, Olejnik A, Turner DH, Kierzek R (2009) Chemical Synthesis of LNA-2-thiouridine and Its Influence on Stability and Selectivity of Oligonucleotide Binding to RNA. Biochemistry 48:10882–10893. doi:10.1021/bi901506f

    Article  CAS  Google Scholar 

  22. Abandansari HS, Aghaghafari E, Nabid MR, Niknejad H (2013) Preparation of injectable and thermoresponsive hydrogel based on penta-block copolymer with improved sol stability and mechanical properties. Polymer 54:1329–1340. doi:10.1016/j.polymer.2013.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 21376124, 21006054) and Natural Training Programs of Innovation for Undergraduates (No.201310304019Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **li Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Zhang, S., Wang, M. et al. A glucose-based diblock copolymer: synthesis, characterization and its injectable/temperature-sensitive behaviors. J Polym Res 21, 390 (2014). https://doi.org/10.1007/s10965-014-0390-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0390-y

Keywords

Navigation