Log in

Computational Study of Sorbic Acid Drug Adsorption onto Coronene/Fullerene/Fullerene-Like X12Y12 (X = Al, B and Y = N, P) Nanocages: DFT and Molecular Docking Investigations

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Adsorption of the sorbic acid drug onto the surface of coronene/fullerene/fullerene like nanocages was investigated by theoretical calculations. Our results showed that the sorbic acid drug connects the nanoclusters through oxygen and hydrogen atoms. Due to the adsorption of the sorbic acid drug, there are significant changes in chemical descriptors and nonlinear optical properties. Energy gap values of all nanocluster systems are reduced, resulting in enhance in the conductivity of systems except for fullerene. All complex’s ultraviolet (UV) visible wavenumber is blue-shifted and especially for coronene and fullerene complex, the values are very high. The enhancement for different functional group wavenumbers in the Raman spectrum indicates that it is possible to make a nanocage sensor for the detection of these compounds using surface-enhanced Raman scattering (SERS). Docking gives good values of atomic contact energies and suitable for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Rad, V. Samipour, S. Movaghgharnezhd, A. Mirabi, M. H. Shahavie, and B. K. Moghadas (2019). X12N12 (X=Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surfaces and Interfaces 15, 30–37. https://doi.org/10.1016/j.surfin.2019.02.001.

    Article  CAS  Google Scholar 

  2. F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi, and M. R. Hamblin (2019). Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 14, 93–126. https://doi.org/10.2217/nnm-2018-0120.

    Article  CAS  PubMed  Google Scholar 

  3. I. Ali, R. Uddin, K. Salim, M. A. Rather, W. A. Wani, and A. Haque (2011). Curr. Cancer Drug Targets 11, 135–146. https://doi.org/10.2174/156800911794328493.

    Article  CAS  PubMed  Google Scholar 

  4. M. Cushen, J. Kerry, M. Morris, M. Cruz-Romero, and E. Cummins (2012). Nanotechnologies in the food industry: recent developments, risks and regulation. Trends Food Sci. Technol. 24, 30–46. https://doi.org/10.1016/j.tifs.2011.10.006.

    Article  CAS  Google Scholar 

  5. S. S. Asadi-Ojaee, A. Mirabi, A. S. Rad, S. Movaghgharnezhad, and S. Hallajian (2019). Removal of Bismuth(III) ions from water solution using a cellulose based nanocomposite: A detailed study by DFT and experimental insights. Journal of Molecular Liquids 295, 111723. https://doi.org/10.1016/j.molliq.2019.111723.

    Article  CAS  Google Scholar 

  6. M. D. Firouzjaei, F. A. Afkhami, M. R. Esfashani, C. H. Turner, and S. Nejati (2020). Experimental and molecular dynamics study of dye removal from water by a graphene oxide copper metal organic frame works nanocomposite. Journal of Water Process Engineering 34, 101180. https://doi.org/10.1016/j.jwpe.2020.101180.

    Article  Google Scholar 

  7. S. Mitragotri, D. G. Anderson, X. Chen, E. K. Chow, D. Ho, A. V. Kabanov, J. M. Karp, K. Kataoka, C. A. Mirkin, S. H. Petrosko, J. Shi, M. M. Stevens, S. Sun, S. Teoh, S. S. Venktraman, Y. **a, S. Wang, Z. Gu, and C. Xu (2015). Accelerating the translation of nanomaterials in biomedicine. ACS Nano 9, 6644–6654. https://doi.org/10.1021/acsnano.5b03569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Chimene, D. L. Alge, and A. K. Gaharwar (2016). Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 27, 7261–7284. https://doi.org/10.1002/adma.201502422.

    Article  CAS  Google Scholar 

  9. M. Pan, J. Yang, K. Liu, Z. Yin, T. Ma, S. Liu, L. Xu, and S. Wang (2020). Noble metal nanostructures materials for chemical and biosensing systems. Nanomaterials 10, 209. https://doi.org/10.3390/nano10020209.

    Article  CAS  PubMed Central  Google Scholar 

  10. M. Prosa, M. Bolognesi, L. Fornasari, G. Grasso, L. Lopez-Sanchez, F. Marabelli, and S. Toffanin (2020). Nanostructures organic/hybrid materials and components in miniaturized optical and chemical sensors. Nanomaterials 10, 480. https://doi.org/10.3390/nano10030480.

    Article  CAS  PubMed Central  Google Scholar 

  11. A. G. Lacko, N. A. Sabnis, B. Nagarajan, and W. J. McConathy (2015). HDL as a drug and nucleic acid delivery vehicle. Front. Pharm. 6, 247. https://doi.org/10.3389/fphar.2015.00247.eCollection2015.

    Article  Google Scholar 

  12. S. Raut, L. Mooberry, N. Sabnis, A. Garud, A. S. Dossou, and A. Lacko (2018). Reconstituted HDL: Drug delivery platform for overcoming biological barriers to cancer therapy. Front. Pharm. 9, 1154. https://doi.org/10.3389/fhpar.2018.01154.

    Article  CAS  Google Scholar 

  13. J. Chaudhary, J. Bower, and I. R. Corbin (2019). Lipoprotein drug delivery vehicles for cancer: Rationale and Reason. Int. J. Mol. Sci. 20, 6327. https://doi.org/10.3390/ijms20246327.

    Article  CAS  PubMed Central  Google Scholar 

  14. Z. Jafari, R. Baharfar, A. S. Rad, and S. Asghari (2020). Potential of graphene oxide as a drug delivery system of sumatriptan, A detailed density functional theory study. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1736161

  15. M. Khodashenas, M. S. Ardjmand, A. S. Baei, and Rad, and A. A. Khiyavi, (2019). Bovine serum albumin /gold nano particles as a drug delivery system for curcumin: Experimental and computational studies. Journal of Biomolecular Structure and Dynamics. 38, 4644–4654. https://doi.org/10.1080/07391102.2019.1683073.

    Article  CAS  PubMed  Google Scholar 

  16. M. Zhang, J. He, C. Jiang, W. Zhang, Y. Yang, and Z. Wang (2017). Plaque hyaluronidase responsive high density lipoprotein mimetic nanoparticles for multistage intimal macrophage targeted drug deliver and enhanced anti-atherosclerotic therapy. Int. J. Nanomed. 12, 533–558. https://doi.org/10.2147/IJN.S124252.

    Article  Google Scholar 

  17. S. Li, Q. Jiang, S. Lu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G. J. Anderson, J. Y. Han, Y. Chang, Y. Liu, C. Zheng, L. Chen, G. Zhou, G. Nie, H. Yan, B. Ding, and Y. Zhao (2018). A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264. https://doi.org/10.1038/nbt.4071.

    Article  CAS  PubMed  Google Scholar 

  18. S. Li, Y. Zhang, S. H. Ho, B. Li, M. Wang, X. Deng, N. Yang, G. Liu, Z. Lu, J. Xu, Q. Shi, J. Y. Han, L. Zhang, Y. Wu, Y. Zhao, and G. Nie (2020). Combination of tumour-infarction therapy and chemotherapy via the co-delivery of doxorubicin and thrombin encapsulated in tumour targeted nanoparticles. Nature Biomedical Engineering 4, 732–742. https://doi.org/10.1038/s41551-020-0573-2.

    Article  CAS  PubMed  Google Scholar 

  19. X. Wang and L. Guo (2020). SERS activity of semiconductors: Crystalline and amorphous nanomaterials. Angewandte Chemie 59, 4231–4239. https://doi.org/10.1002/anie.201913375.

    Article  CAS  PubMed  Google Scholar 

  20. S. Sabokdast, A. Horri, Y. T. Azar, M. Momeni, and M. B. Tavakoli (2020). Adsorption of adenine molecule on χ3 borophene nanosheets: A density functional theory study. Physica E: Low-dimensional systems and Nanostructures 119, 114026. https://doi.org/10.1016/j.physe.2020.114026.

    Article  CAS  Google Scholar 

  21. R. Padash, M. Rahimi-Nasrabadi, A. S. Rad, A. Sobhani-Nasab, T. Jesionowski, and H. Ehrlich (2019). A comparative computational investigation of phosgene adsorption on (XY) 12(X=Al, B and Y=N, P) nanoclusters: DFT investigations. Journal of Cluster Science 30, 203–218. https://doi.org/10.1007/s10876-018-1479-y.

    Article  CAS  Google Scholar 

  22. R. Padash, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M. Mirmotahari, H. Ehrlich, A. S. Rad, and M. Peyravi (2018). Is it possible to use X12Y12 (X=Al, B and Y=N, P) nanocages for drug delivery systems? A DFT study of the adsorption property of 4-aminopyridine drug. Applied Physics A 124, 582. https://doi.org/10.1007/s00339-018-1965-y.

    Article  CAS  Google Scholar 

  23. H. R. Naderi, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and M. R. Ganjali (2017). Decoration of nitrogen doped reduced graphene oxide with cobalt tungstate nano particles for use in high performance supercapacitors. Applied Surface Science 423, 1025–1034. https://doi.org/10.1016/j.apsusc.2017.06.239.

    Article  CAS  Google Scholar 

  24. M. Sherafati, A. S. Rad, M. Ardjmand, A. Heydarinasab, M. Peyravi, and M. Mirzaei (2018). Beryllium oxide (BeO) nano tube provides excellent surface towards adenine adsorption: A dispersion corrected DFT study in gas and water phases. Current Applied Physics 18, 1059–1065. https://doi.org/10.1016/j.cap.2018.05.024.

    Article  Google Scholar 

  25. R. Padash, M. R. Esfahani, and A. S. Rad (2020). The computational quantum mechanical study of sulfamide drug adsorption onto X12Y12 fullerene-like nanocages: detailed DFT and QTAIM investigations. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1792991.

    Article  PubMed  Google Scholar 

  26. A. H. Almuqrin, J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, and R. Thomas (2020). Structural study of letrozole and metronidazole and formation of self-assembly with graphene and fullerene with the enhancement of physical, chemical and biological activities. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1790420.

    Article  PubMed  Google Scholar 

  27. J. S. Al-Otaibi, Y. S. Mary, R. Thomas, and S. Kaya (2020). Detailed electronic structure, physic-chemical properties, excited state properties, virtual bioactivity screening and SERS analysis of three guanine based antiviral drugs, valacyclovir HCl hydrate, acyclovir and ganciclovir. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2020.1773876.

    Article  Google Scholar 

  28. J. S. Al-Otaibi, Y. S. Mary, Y. S. Mary, S. Kaya, and S. Erkan (2020). Spectral analysis and DFT investigation of some benzopyran analogues and their self-assemblies with graphene. Journal of Molecular Liquids 317, 113924. https://doi.org/10.1016/j.molliq.2020.113924.

    Article  CAS  Google Scholar 

  29. A. H. Almuqrin, J. S. Al-Otaibi, Y. S. Mary, R. Thomas, S. Kaya, and D. O. Isin (2020). Spectral analysis and detailed quantum mechanical investigation of some acetanilide analogues and their self-assemblies with graphene and fullerene. Journal of Molecular Modeling 26, 254. https://doi.org/10.1007/s00894-020-04485-3.

    Article  CAS  PubMed  Google Scholar 

  30. A. Escobedo-Morales, L. Tepech-Carrillo, A. Bautista-Hernandez, J. H. Camacho-Garcia, D. Cortes-Arriagada, and E. Chigo-Anota (2019). Effect of chemical order in the structural stability and physicochemical properties of B12N12 fullerenes. Scientific Reports 9, 16521. https://doi.org/10.1038/s41598-019-52981-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Garcia-Hernandez, E. Salazar-Garcia, E. Shakerzadeh, and E. Chigo-Anota (2020). Effect of dehydrogenated hydrocarbon do** on the electronic properties of graphene-type nanosheets. Physics Letter A 384, 126702. https://doi.org/10.1016/j.physleta.2020.126702.

    Article  CAS  Google Scholar 

  32. R. Pino-Rios, E. Chigo-Anota, E. Shakerzadeh, and G. Gardenas-Jiron (2020). B12N12 cluster as a collector of noble gases: A quantum chemical study. Physica E 115, 113697. https://doi.org/10.1016/j.physe.2019.113697.

    Article  CAS  Google Scholar 

  33. A. R. Juarez, F. Ortiz-Chi, M. Borges-Martinez, G. Cardenas-Jiron, M. S. Villanueva, and E. C. Anota (2019). Stability, electronic and optical properties of the boron nitride cage (B47N53) from quantum mechanical calculations. Physica E: Low-dimensional Systems and Nanostructures 111, 118–126. https://doi.org/10.1016/j.physe.2019.02.017.

    Article  CAS  Google Scholar 

  34. A. R. Juarez, F. Otriz-Chi, R. Pino-Rios, G. Cardenas-Jiron, M. S. Villanueva, and E. C. Anota (2020). The boron nitride (B116N124) fullerene: Stability and electronic properties from DFT simulations. Chemical Physics Letters 741, 137097. https://doi.org/10.1016/j.cplett.2020.137097

  35. C. Ferrand, F. Marc, P. Fritsch, P. Cassand, and G. D. S. Blanquat (2000). Genotoxicity study of reaction products of sorbic acid. J. Agric. Food Chem. 48, 3605–3610. https://doi.org/10.1021/jf990777f.

    Article  CAS  PubMed  Google Scholar 

  36. J. W. A. van Beilen, M. J. T. de Mattos, K. J. Hellingwerf, and S. Brul (2014). Distinct effects of sorbic acid and acetic acid on the electrophysiology and metabolism of bacillus subtilis. Applied and Environmental Microbiology 80, 5918–5926. https://doi.org/10.1128/aem.01391-14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. C. Xu, J. Liu, C. Feng, H. Lv, S. Lv, D. Ge, and K. Zhu (2019). Investigation of benzoic acid and sorbic acid in snack foods in Jilin province, China. International Journal of Food Properties 22, 670–677. https://doi.org/10.1080/10942912.2019.1599011.

    Article  CAS  Google Scholar 

  38. C. Dong and W. Wang (2006). Headspace solid phase microextraction applied to the simultaneous determination of sorbic and benzoic acids in beverages. Anal. Chim. Acta 562, 23–29. https://doi.org/10.1016/j.aca.2006.01.045.

    Article  CAS  Google Scholar 

  39. W. Tang, X. Tian, Y. Zhang, D. Yin, W. Zhao, W. Zhang, and S. Zhang (2017). Determination of benzoic acid and sorbic acid in seasoning by capillary electrophoresis with new triethylamine aminated polychloromethyl styrene nanolatex coated capillary column. Anal. Methods 9, 6280–6285. https://doi.org/10.1039/C7AY01930K.

    Article  CAS  Google Scholar 

  40. D. B. Kim, G. J. Jang, M. Yoo, G. Lee, S. S. Yun, H. S. Lim, M. Kim, and S. Lee (2018). Sorbic, benzoic and propionic acids in fishery products: A survey of the south Korean market. Food Addit. Contam. Part A Chem. Anal. Control Exposure risk Assess 35, 1071–1077. https://doi.org/10.1080/19440049.2018.1447692.

    Article  CAS  Google Scholar 

  41. A. Y. Sirhan (2018). Optimization and validation of an HPLC-UV method for determination of benzoic acid and sorbic acid in yogurt and dried yogurt products using a design of experiment. Indonesian J. Chem. 18, 522–530. https://doi.org/10.22146/ijc.27675

  42. I. Timofeeva, D. Kanashina, D. Kirsanov, and A. Bulatov (2018). A heating assisted liquid-liquid micro extraction approach using menthol: Separation of benzoic acid in juice samples followed by HPLC-UV determination. J. Mol. Liquid. 261, 265–270. https://doi.org/10.1016/j.molliq.2018.04.040.

    Article  CAS  Google Scholar 

  43. H. Zhu, Z. Xu, D. **e, and Y. Fang, Graphene: fabrication, characterizations, properties and applications (Academic Press, London, 2018).

    Google Scholar 

  44. A. Nicolai, B. G. Sumpter, and V. Meunier (2014). Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654. https://doi.org/10.1039/C4CP01051E.

    Article  CAS  PubMed  Google Scholar 

  45. M. J. Sweetman, S. May, N. Mebberson, P. Pendleton, K. Vasileve, S. E. Plush, and J. D. Hayball (2017). Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. J Carbon Res 3, 18. https://doi.org/10.3390/c3020018.

    Article  CAS  Google Scholar 

  46. A. V. B. Reddy, M. Moniruzzaman, Y. V. M. Reddy, and G. Madhavi (2019). Graphene-based nanomaterials for the removal of pharmaceuticals in drinking water sources, In Graphene-Based Nanotechnologies for Energy and Environmental Applictions. Pp. 329–358, Elsevier.

  47. Y. S. Mary and Y. S. Mary (2020). Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. Spectrochim. Acta 244, 118865. https://doi.org/10.1016/j.sa.2020.118865.

    Article  Google Scholar 

  48. P. Lazar, F. Karlicky, P. Jurecka, M. Kocman, E. Otyepkova, K. Safarova, and M. Otyepka (2013). Adsorption of small organic molecules on graphene. J. Am. Chem. Soc. 135, 6372–6377. https://doi.org/10.1021/ja403162r.

    Article  CAS  PubMed  Google Scholar 

  49. A. Al-Jumaili, S. Alancherry, K. Bazaka, and M. Jacob (2017). Review on the antimicrobial properties of carbon nanostructures. Materials 10, 1066. https://doi.org/10.3390/ma100910066

  50. R. Ahamadi, M. R. J. Sarvestani, and B. Sadeghi (2018). computational study of the fullerene effects on the properties of 16 different drugs: A review. Int J Nano Dimens 9, 325–335.

    Google Scholar 

  51. Q. Sun, R. Zhang, J. Qiu, R. Liu, and W. Xu (2018). On-surface synthesis of carbon nanostructures. Adv Mater 30, 1705630. https://doi.org/10.1002/adma.201705630.

    Article  CAS  Google Scholar 

  52. Y. Jiang, J. Wang, L. Malfatti, D. Carboni, N. Senes, and P. Innocenzi (2018). Highly durable graphene mediated surface enhanced Raman scattering (G-SERS) nanocomposites for molecular detection. Appl Surf Sci 450, 451–460. https://doi.org/10.1016/j.apsusc.2018.04.218.

    Article  CAS  Google Scholar 

  53. Gaussian 16, Revision A.03, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

  54. GaussView, Version 6.1, Roy Dennington, Todd A. Keith, and John M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.

  55. E. G. Hohenstein, S. T. Chill, and C. D. Sherrill (2008). Assessment of the performance of the M05–2X and M06–2X exchange correlation functional for the noncovalent interaction in biomolecules. J. Chem. Theory Comput. 4, 1996–2000. https://doi.org/10.1021/ct800308k.

    Article  CAS  PubMed  Google Scholar 

  56. K. E. Riley, M. Pitonak, P. Jurecka, and P. Hobza (2010). Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110, 5023–5063. https://doi.org/10.1021/cr1000173.

    Article  CAS  PubMed  Google Scholar 

  57. A. J. Cohen, P. Mor-Sanchez, and W. Yang (2012). Challenges for density functional theory. Chem. Rev. 112, 289–320. https://doi.org/10.1021/cr200107z.

    Article  CAS  PubMed  Google Scholar 

  58. K. Mahboobeh, and T. L. Elham (2020). B12Y12 (Y:N,P) fullerene like cages for exemestane delivery; molecular modeling investigation. J. Mol. Struct. 128455. https://doi.org/10.1016/j.molstruc.2020.128455

  59. Y. Zhao and D. G. Truhlar (2008). The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functional and systematic testing of our M06-class functional and 12 other functional. Theor. Chem. Account 120, 215–241. https://doi.org/10.1007/s00214-007-0310-x.

    Article  CAS  Google Scholar 

  60. J. S. Al-Otaibi, Y. S. Mary, S. Armakovic, and R. Thomas (2019). Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: Detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. J Mol Struct. https://doi.org/10.1016/j.molstruc.2019.127316.

    Article  Google Scholar 

  61. N. M. O’boyle, A. L. Tenderholt, and K. M. Langner, (2008). Cclib: a library for package independent computational chemistry algorithms. Journal of computational chemistry 29, 839–845. https://doi.org/10.1002/jcc.20823.

    Article  CAS  Google Scholar 

  62. C. Tang and Q. Zhang (2017). Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges and defects. Advance Science News. https://doi.org/10.1002/adma.201604103.

    Article  Google Scholar 

  63. S. Li, Semiconductor Physical Electronics, 2nd ed. (Springer, Berlin, 2006).

    Book  Google Scholar 

  64. Y. S. Mary, C. Y. Panicker, M. Sapnakumari, B. Narayana, B. K. Saro**i, A. A. Al-Saadi, C. Van Alsenoy, J. A. War, and H. K. Fun (2015). Molecular structure, FT-IR, Vibrational assignments, HOMO-LUMO analysis and molecular docking study of 1-[5-(4-Bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone. Spectrochim Acta 136, 473–482. https://doi.org/10.1016/j.saa.2014.09.060.

    Article  CAS  Google Scholar 

  65. B. Sureshkumar, Y. S. Mary, C. Y. Panicker, S. Suma, S. Armakovic, S. J. Armakovic, C. Van Alsenoy, and B. Narayna (2020). Quinoline derivatives as possible lead compounds for anti-malarial drugs: Spectroscopic. DFT and MD study Arabian Journal of Chemistry 13, 632–648. https://doi.org/10.1016/j.arabjc.2017.07.006.

    Article  CAS  Google Scholar 

  66. M. Fleischmann, P. J. Hendra, and A. J. McQuillan (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26, 163–166. https://doi.org/10.1016/0009-2614(74)85388-1.

    Article  CAS  Google Scholar 

  67. M. G. Albrecht and J. A. Creighton (1977). Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc 99, 5215–5217. https://doi.org/10.1021/ja00457a071.

    Article  CAS  Google Scholar 

  68. D. L. Jeanmaire and R. P. Van duyne, (2006). Surface Raman spectro electrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem 84, 1–20. https://doi.org/10.1016/S0022-0728(77)80224-6.

    Article  Google Scholar 

  69. E. Smith, and G. Dent (2004). Modern Raman Spectroscopy – A practical approach, https://doi.org/10.1002/0470011831.index

  70. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld (1997). Single molecule detection using surface enhanced Raman scattering (SERS). Phys Rev Lett 78, 1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667.

    Article  CAS  Google Scholar 

  71. S. Nie, and S. R. Emory (1997). Probing single molecules and single nano particles by surface enhanced Raman scattering. Science 275, 1102–1106. https://doi.org/10.1126/science.275.5303.1102

  72. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov (2004). Electric field in atomically thin carbon films. Science 306, 666–669. https://doi.org/10.1126/science.1102896.

    Article  CAS  PubMed  Google Scholar 

  73. V. Sharma, N. N. Som, S. B. Pillai, and P. K. Jha (2020). Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochim Acta 224, 117352. https://doi.org/10.1016/j.saa.2019.117352.

    Article  CAS  Google Scholar 

  74. J. S. Al-Otaibi (2020). Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochim Acta 235, 118333. https://doi.org/10.1016/j.saa.2020.118333.

    Article  CAS  Google Scholar 

  75. J. S. Al-Otaibi, A. H. Almuqrin, Y. S. Mary, and Y. S. Mary (2020). Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. Journal of Molecular Structure 1217, 128388. https://doi.org/10.1016/j.molstruc.2020.128388.

    Article  CAS  Google Scholar 

  76. A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov (2000). PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16, 747–748. https://doi.org/10.1093/bioinformatics/16.8.747.

    Article  CAS  PubMed  Google Scholar 

  77. D. Duhovny, R. Nussinov, and H. J. Wolfson (2000). Efficient unbound docking of rigid molecules, in: Gusfield et al. (Eds.), Proceedings of the second workshop on algorithms in bioinformatics (WABI) Rome, Italy, Lecture notes in computer science, vo. 2452, Springer Verlag, pp.185–200.

  78. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov, and H. J. Wolfson (2005). Patchdock and Symmdock: servers for rigid and symmetric docking. Nucl Acids Res 33, W363–W367. https://doi.org/10.1093/nar/gki481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Y. S. Mary, Y. S. Mary, K. S. Resmi, and R. Thomas (2019). DFT and molecular docking investigations of oxicam derivatives. Heliyon 5, e02175. https://doi.org/10.1016/j.heliyon.2019.e02175.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shyma Mary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 623 kb)

Supplementary file2 (DOCX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyma Mary, Y., Sheena Mary, Y. & Ullah, Z. Computational Study of Sorbic Acid Drug Adsorption onto Coronene/Fullerene/Fullerene-Like X12Y12 (X = Al, B and Y = N, P) Nanocages: DFT and Molecular Docking Investigations. J Clust Sci 33, 1809–1819 (2022). https://doi.org/10.1007/s10876-021-02106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02106-4

Keywords

Navigation