Log in

Is it possible to use X12Y12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the first time, the adsorption of 4-aminopyridine (4-AP) drug onto four X12Y12 fullerene-like nanocages (Al12N12, Al12P12, B12N12, and B12P12) was investigated using density functional theory (DFT) calculations at the M06-2X /6-311 g(d,p) theoretical level. We tried to study the relaxed structures of the adsorbed 4-AP drug on each cages by considering the calculations of bond distance, adsorption energy, charge analysis, frontier orbital analysis, dipole moment, and density of states. For each system, we found the transfer of charge from drug to nanocage that points to the p-type semiconducting property of nanocages. The bond formation of the drug with nanocages is resulted from the connection of nucleophilic part of 4-AP drug (as an electron-donating substance) with the electrophilic part of these nanocages. The adsorption energy of 4-AP was calculated to be − 1.36, − 1.09, − 1.35, and − 1.09 eV upon interaction with Al12N12, Al12P12, B12N12, and B12P12, respectively. The results reveal that, in all cases, the 4-AP is bonded covalently through the nitrogen. The bandgap of each nanocage (except Al12N12) is significantly reduced upon adsorption of 4-AP. Finally, it can be concluded that Boron- containing nanocages are better sensors for the 4-AP molecule than aluminum-containing owing to the higher changes in their bandgap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2, 751 (2007)

    Article  ADS  Google Scholar 

  2. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric cap** agents. J. Mol. Struct. 1157, 607–615 (2018)

    Article  ADS  Google Scholar 

  3. M. Rahimi-Nasrabadi, H.R. Naderi, M. Sadeghpour Karimi, F. Ahmadi, S.M. Pourmortazavi, Cobalt carbonate and cobalt oxide nanoparticles synthesis, characterization and supercapacitive evaluation. J. Mater. Sci. Mater. Electron. 28, 1877–1888 (2017)

    Article  Google Scholar 

  4. M. Rahimi-Nasrabadi, Strontium molybdate nanostructures: synthesis of different shapes through a new approach and its photocatalyst application. J. Mater. Sci. Mater. Electron. 28, 2200–2205 (2017)

    Article  Google Scholar 

  5. M. Rahimi-Nasrabadi, F. Ahmadi, A. Fosooni, Influence of cap** agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci. Mater. Electron. 28, 537–542 (2017)

    Article  Google Scholar 

  6. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric cap** agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16459–16466 (2017)

    Article  Google Scholar 

  7. J. Beheshtian, A.A. Peyghan, M. Noei, Sensing behavior of Al and Si doped BC3 graphenes to formaldehyde. Sens. Actuator B Chem. 181, 829–834 (2013)

    Article  Google Scholar 

  8. M.S.H. Namin, P. Pargolghasemi, S. Alimohammadi, A.S. Rad, L. Taqavi, Quantum chemical study on the adsorption of metformin drug on the surface of pristine, Si- and Al-doped (5, 5) SWCNTs. Physica E 90, 204–213 (2017)

    Article  ADS  Google Scholar 

  9. A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, Study on the electronic structure of Cr- and Ni-doped fullerenes upon adsorption of adenine: a comprehensive DFT calculation. Diamond Relat. Mater. 77, 116–121 (2017)

    Article  ADS  Google Scholar 

  10. A.S. Rad, S.M. Aghaei, E. Aali, M. Peyravi, M. Jahanshahi, Application of chromium-doped fullerene as a carrier for thymine and uracil nucleotides: a comprehensive DFT calculations. Appl. Organomet. Chem. 32, 4070 (2018)

    Article  Google Scholar 

  11. J. Kreuter, Nanoparticles. Colloidal Drug Delivery Systems (Marcel Dekker, Inc., New York, 1994), pp. 219–342

    Google Scholar 

  12. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, W.E. Rudzinski, Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release. 70, 1–20 (2001)

    Article  Google Scholar 

  13. V.P. Torchilin, Micellar nanocarriers: pharmaceutical perspectives. Pharm. Res. 24, 1 (2007)

    Article  Google Scholar 

  14. L. Basile, R. Pignatello, C. Passirani, Active targeting strategies for anticancer drug nanocarriers. Curr. Drug Deliv. 9, 255–268 (2012)

    Article  Google Scholar 

  15. S. Ganta, H. Devalapally, A. Shahiwala, M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release. 126, 187–204 (2008)

    Article  Google Scholar 

  16. B. Thierry, Drug nanocarriers and functional nanoparticles: applications in cancer therapy. Curr. Drug Deliv. 6, 391–403 (2009)

    Article  Google Scholar 

  17. X. Yang, J.J. Grailer, S. Pilla, D.A. Steeber, S. Gong, Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconjugate Chem. 21, 496–504 (2010)

    Article  Google Scholar 

  18. X. Zhang, H. Cui, Y. Gui, J. Tang, Nanoscale Res. Lett. 12, 177–189 (2017)

    Article  ADS  Google Scholar 

  19. X. Zhang, H. Cui, Y. Gui, Sensors 17, 363–373 (2017)

    Article  Google Scholar 

  20. I. Zanella, S.B. Fagan, R. Mota, A. Fazzio, Chem. Phys. Lett. 439, 348–353 (2007)

    Article  ADS  Google Scholar 

  21. M.T. Baei, Z. Bagheri, A.A. Peyghan, Struct. Chem. 24, 1039–1044 (2013)

    Article  Google Scholar 

  22. J. Beheshtian, A.A. Peyghan, Z. Bagheri, J. Mol. Model. 19, 833–837 (2013)

    Article  Google Scholar 

  23. K. Kostarelos, Adv. Colloid Interface Sci. 106, 147–168 (2003)

    Article  Google Scholar 

  24. Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Cancer Res. 68, 6652–6660 (2008)

    Article  Google Scholar 

  25. R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Int. J. Nanomedicine 2, 639–649 (2007)

    Google Scholar 

  26. X. Zhang, L. Yu, X. Wu, W. Hu, Adv. Sci. 2, 1–10 (2015)

    ADS  Google Scholar 

  27. E. Chigo-Anota, A. Escobedo-Morales, H. Hernández-Cocoletzi, J.G. López y López, Physica E 74, 538–543 (2015)

    Article  ADS  Google Scholar 

  28. M. Rahimi-Nasrabadi, A. Khoshroo, M. Mazloum-Ardakani, Electrochemical determination of diazepam in real samples based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens. Actuators B 240, 125–131 (2017)

    Article  Google Scholar 

  29. A.S. Rad, K. Ayub, Enhancement in hydrogen molecule adsorption on B12N12 nano-cluster by decoration of nickel. Int. J. Hydr. Energy 41, 22182–22191 (2016)

    Article  Google Scholar 

  30. A.S. Rad, K. Ayub, O3 and SO2 sensing concept on extended surface of B12N12 nanocages modified by Nickel decoration: a comprehensive DFT study. Solid State Sci. 69, 22–30 (2017)

    Article  ADS  Google Scholar 

  31. J. Beheshtian, A.A. Peyghan, Z. Bagheri, Functionalization of [60] fullerene with butadienes: a DFT study. Appl. Surf. Sci. 258, 8980–8984 (2012)

    Article  ADS  Google Scholar 

  32. A.F. Jalbout, Endohedral metallo [80] fullerene interactions with small polar molecules. Comput. Mater. Sci. 44, 1065–1070 (2009)

    Article  Google Scholar 

  33. J. Lee, B. Lee, F. Au, J. Zhang, Y. Zeng, Vibrational and dynamic analysis of C60 and C30 fullerenes using FEM. Comput. Mater. Sci. 56, 131–140 (2012)

    Article  Google Scholar 

  34. A.S. Rad, D. Zareyee, V.P. Foukolaei, B.K. Moghadas, M. Peyravi, Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH3Cl. Mol. Phys. 114, 3143–3149 (2016)

    Article  ADS  Google Scholar 

  35. A.S. Rad, Study on the surface interaction of Furan with X12Y12 (X = B, Al, and Y = N, P) semiconductors: DFT calculations. Heteroat. Chem. 27, 316–322 (2016)

    Article  Google Scholar 

  36. A.S. Rad, K. Ayub, Coordination of nickel atoms with Al12X12 (X = N, P) nanocages enhances H2 adsorption: a surface study by DFT. Vacuum 133, 70–80 (2016)

    Article  ADS  Google Scholar 

  37. A.S. Rad, K. Ayub, Adsorption properties of acetylene and ethylene molecules onto pristine and Nickel-decorated Al12N12 nanoclusters. Mater. Chem. Phys. 194, 337–344 (2017)

    Article  Google Scholar 

  38. A.S. Rad, K. Ayub, Adsorption of thiophene on the surfaces of X12Y12 (X = Al, B, and Y = N,P) nanoclusters; A DFT study. J. Mol. Liq. 238, 303–309 (2017)

    Article  Google Scholar 

  39. A.S. Rad, Chemisorption of BH3 and BF3 on aluminum nitride nanocluster: quantum-chemical investigations. J. Nanostruct. Chem. 7, 207–215 (2017)

    Article  Google Scholar 

  40. A.S. Rad, S.B. Novir, S. Mohseni, N.R. Cherati, A. Mirabi, A DFT study of O2 and Cl2 adsorption onto Al12N12 fullerene-like nanocluster. Heteroat. Chem. 28(5), 21396 (2017)

    Article  Google Scholar 

  41. A.S. Rad, Comparison of X12Y12 (X = Al, B and Y = N, P) fullerene-like nanoclusters towards adsorption of dimethyl ether. J Theor Comput Chem 17, 1850013 (2018)

    Article  Google Scholar 

  42. G. Seifert, P. Fowler, D. Mitchell, D. Porezag, T. Frauenheim, Boron–nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268, 352–358 (1997)

    Article  ADS  Google Scholar 

  43. W.H. Moon, M.S. Son, H.J. Hwang, Theoretical study on structure of boron nitride fullerenes. Appl. Surf. Sci. 253, 7078–7081 (2007)

    Article  ADS  Google Scholar 

  44. A.A. Peyghan, M. Pashangpour, Z. Bagheri, M. Kamfiroozi, Energetic, structural, and electronic properties of hydrogenated Al12P12 nanocluster. Physica E. 44, 1436–1440 (2012)

    Article  ADS  Google Scholar 

  45. J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Theoretical study of hydrogen adsorption on the B12P12 fullerene-like nanocluster. Comput. Mater. Sci. 54, 115–118 (2012)

    Article  Google Scholar 

  46. T. Oku, I. Narita, A. Nishiwaki, Synthesis, atomic structures, and electronic states of boron nitride nanocage clusters and nanotubes. Mater. Manuf. Process 19, 1215–1239 (2004)

    Article  Google Scholar 

  47. R.T. Paine, C.K. Narula, Synthetic routes to boron nitride. Chem. Rev. 90, 73–91 (1990)

    Article  Google Scholar 

  48. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, K. Suganuma, Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Mater. Sci. Eng. B 74, 206–217 (2000)

    Article  Google Scholar 

  49. T. Oku, M. Kuno, H. Kitahara, I. Narita, Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater. 3, 597–612 (2001)

    Article  Google Scholar 

  50. H. Wang, A density functional investigation of fluorinated B12N12 clusters. Chin. J. Chem. Phys. 28, 1897–1901 (2010)

    Article  Google Scholar 

  51. P.Y. Feng, K. Balasubramanian, Spectroscopic properties of Al2P2, Al2P2 +, and Al2P2 and comparison with their Ga and in analogues. J. Phys. Chem. A 103, 9093–9099 (1999)

    Article  Google Scholar 

  52. E.F. Archibong, R.M. Gregorius, S. Alexander, Structures and electron detachment energies of AlP2 and Al2P2 . Chem. Phys. Lett. 321, 253–261 (2000)

    Article  ADS  Google Scholar 

  53. P.Y. Feng, K. Balasubramanian, Potential energy surfaces of electronic states of AlP2, Al2P and their ions. Chem. Phys. Lett. 318, 417–426 (2000)

    Article  ADS  Google Scholar 

  54. V. Ferreira, H.L. Alves, Boron phosphide as the buffer-layer for the epitaxial III-nitride growth: a theoretical study. J. Cryst. Growth 310, 3973–3978 (2008)

    Article  ADS  Google Scholar 

  55. P. Lechat, S. Thesleff, W.C. Bowman, Aminopyridines and similarly acting drugs: effects on nerves, muscles and synapses. In: Proceedings of a IUPHAR Satellite Symposium in Conjunction with the 8th International Congress of Pharmacology, Paris, France, July 27–29, 1981, Elsevier (2013)

  56. E. Schafer, R.B. Brunton, N. Lockyer, The effects of subacute and chronic exposure to 4-aminopyridine on reproduction in coturnix quail. Bull Environ Contam Toxicol 13, 758–764 (1975)

    Article  Google Scholar 

  57. E. Schafer Jr., R.B. Brunton, N. Lockyer, Hazards to animals feeding on blackbirds killed with 4-aminopyridine baits. J. Wildl. Manag. 38, 424–426 (1974)

    Article  Google Scholar 

  58. Y. Pichon, H. Meves, M. Pelhate, Effects of aminopyridines on ionic currents and ionic channel noise in unmyelinated axons, in aminopyridines and similarly acting drugs: effects on nerves, muscles and synapses (Elsevier, Amsterdam, 1982), pp. 53–68

    Google Scholar 

  59. O. Pongs, Molecular biology of voltage-dependent potassium channels. Physiol. Rev. 72, S69–S88 (1992)

    Article  Google Scholar 

  60. E.F. Targ, J.D. Kocsis, 4-Aminopyridine leads to restoration of conduction in demyelinated rat sciatic nerve. Brain Res. 328, 358–361 (1985)

    Article  Google Scholar 

  61. S. Thompson, Aminopyridine block of transient potassium current. J. Gen. Physiol. 80, 1–18 (1982)

    Article  Google Scholar 

  62. J. Yeh, G. Oxford, C. Wu, T. Narahashi, Interactions of aminopyridines with potassium channels of squid axon membranes. Biophys. J. 16, 77–81 (1976)

    Article  Google Scholar 

  63. R.D. Miller, L. Booij, S. Agoston, J.F. Crul, 4-Aminopyridine potentiates neostigmine and pyridostigmine in man. Anesthesiology 50, 416–420 (1979)

    Article  Google Scholar 

  64. S. Agoston, P. Salt, W. Erdmann, T. Hilkemeijer, A. Bencini, D. Langehr, Antagonism of Ketamine-Diazepam anaesthesia by 4-aminopyrindine in human volunteers. Br. J. Anaesth. 52, 367–370 (1980)

    Article  Google Scholar 

  65. S. Agoston, E. Maestrone, E. Van Hezik, J. Ket, M. Houwertjes, D. Uges, Effective treatment of verapamil intoxication with 4-aminopyridine in the cat. J. Clin. Investig. 73, 1291–1296 (1984)

    Article  Google Scholar 

  66. R. Gay, S. Algeo, R. Lee, M. Olajos, E. Morkin, S. Goldman, Treatment of verapamil toxicity in intact dogs. J. Clin. Investig. 77, 1805–1811 (1986)

    Article  Google Scholar 

  67. S. Agoston, T. Van Weerden, P. Westra, A. Broekert, Effects of 4-aminopyridine in Eaton–Lambert syndrome. Br. J. Anaesth. 50, 383–385 (1978)

    Article  Google Scholar 

  68. A. Ball, R. Hopkinson, I. Farrell, J. Hutchison, R. Paul, R. Watson, A. Page, R. Parker, C. Edwards, M. Snow, Human botulism caused by Clostridium botulinum type E: the Birmingham outbreak, QJM. Int. J. Clin. Med. 48, 473–491 (1979)

    Google Scholar 

  69. Y.I. Kim, M.M. Goldner, D.B. Sanders, Facilitatory effects of 4-aminopyridine on neuromuscular transmission in disease states. Muscle Nerve 3, 112–119 (1980)

    Article  Google Scholar 

  70. H. Lundh, O. Nilsson, I. Rosen, 4-Aminopyridine—a new drug tested in the treatment of Eaton–Lambert syndrome. J. Neurol. Neurosurg. Psychiatry 40, 1109–1112 (1977)

    Article  Google Scholar 

  71. H. Lundh, O. Nilsson, I. Rosen, Effects of 4-aminopyridine in myasthenia gravis. J. Neurol. Neurosurg. Psychiatry 42, 171–175 (1979)

    Article  Google Scholar 

  72. H. Wesseling, S. Agoston, G.D. Van, J. Pasma, D. DeWit, H. Havinga, Effects of 4-aminopyridine in elderly patients with Alzheimer’s disease. N. Engl. J. Med. 310, 988–989 (1984)

    Article  Google Scholar 

  73. C.T. Bever, 4-Aminopyridine: use in multiple sclerosis. CNS Drug Rev. 1, 261–279 (1995)

    Article  Google Scholar 

  74. A. Solari, B.M. Uitdehaag, G. Giuliani, E. Pucci, C. Taus, Aminopyridines for symptomatic treatment in multiple sclerosis. Cochrane Database Syst. Rev. 4, 1–18 (2001)

    Google Scholar 

  75. K. Hayes, 4-Aminopyridine and spinal cord injury: a review. Restor. Neurol. Neurosci. 6, 259–270 (1994)

    Google Scholar 

  76. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, revision D, 01 (Gaussian, Inc., Wallingford, 2009)

    Google Scholar 

  77. N.M. O’boyle, A.L. Tenderholt, K.M. Langner, Cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  78. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, A comparative study on the B12N12, Al12N12, B12P12 and Al12P12 fullerene-like cages. J. Mol. Model. 18, 2653–2658 (2012)

    Article  Google Scholar 

  79. E. Shakerzadeh, N. Barazesh, S.Z. Talebi, A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlat. Microstruct. 76, 264–276 (2014)

    Article  ADS  Google Scholar 

  80. J. Li, T. He, G. Yang, An all-purpose building block: B12N12 fullerene. Nanoscale 4, 1665–1670 (2012)

    Article  ADS  Google Scholar 

  81. J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster. Microelectron. J. 42, 1400–1403 (2011)

    Article  Google Scholar 

  82. S. Yourdkhani, T. Korona, N.L. Hadipour, Structure and energetics of complexes of B12N12 with hydrogen halides, SAPT (DFT) and MP2 study. J. Phys. Chem. A 119, 6446–6467 (2015)

    Article  Google Scholar 

  83. A.S. Rad, A. Mirabi, M. Peyravi, M. Mirzaei, Nickel-decorated B12P12 nanoclusters as a strong adsorbent for SO2 adsorption: quantum chemical calculations. Can. J. Phys. 95, 958–962 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Rahimi-Nasrabadi or A. S. Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padash, R., Sobhani-Nasab, A., Rahimi-Nasrabadi, M. et al. Is it possible to use X12Y12 (X = Al, B, and Y = N, P) nanocages for drug-delivery systems? A DFT study on the adsorption property of 4-aminopyridine drug. Appl. Phys. A 124, 582 (2018). https://doi.org/10.1007/s00339-018-1965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1965-y

Navigation