Log in

Spectral analysis and detailed quantum mechanical investigation of some acetanilide analogues and their self-assemblies with graphene and fullerene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Spectroscopic analysis and different quantum mechanical studies of four pharmaceutically active compounds phenacetin, p-acetanisidide, 4′-butoxyacetanilide, and 4′-(3-chloropropoxy)acetanilide are reported in this manuscript. Simulated IR spectrum of these compounds was compared with experimentally available data, and essential functional group assignments were made. We also report the frontier orbital properties and other derived local energy descriptors which talks about the relative stability and reactivity. Photovoltaic efficiency of the compounds was studied from the simulated electronic spectra. The compound was found to interact with graphene and fullerene, to form molecular self-assembly. These self-assemblies showed tremendous enhancement in various physicochemical properties when compared with its constituents. The nature of the interactions between studied chemical species was discussed with the help of chemical reactivity principles. Biological activity of the compounds was predicted using molecular docking studies. It is interesting to see that on adsorption with a graphene/fullerene surface, all adsorbed complex shows enhancement in the Raman activity giving surface enhanced Raman spectra (SERS). This can be used for the detection of these drugs in a pharmacological or biological sample. Interestingly the graphene/fullerene drug molecular assembly shows enhanced biological activity when compared with individual drug molecules.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gao XH, Liu LB, Liu HR, Tang JJ, Kang L, Wu H, Cui P, Yan J (2018) Structure-activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain asacetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 33:110–114

    PubMed  CAS  Google Scholar 

  2. Yang X, Peng T, Yang Y, Li W, **ong J, Zhao L, Ding Z (2015) Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Nat. Prod. Res. 29:331–335

    PubMed  CAS  Google Scholar 

  3. Lum RT, Nelson MG, Joly A, Horsma AG, Lee G, Meyer SM, Wick MM, Schow SR (1998) Selective inhibition of the chymotrypsin-like activity of the 20S proteasome by 5-methoxy-1-indanone dipeptide benzamides. Bioorg. Med. Chem. Lett. 8:209–214

    PubMed  CAS  Google Scholar 

  4. Ashton MJ, Cook DC, Fenton G, Karisson JA, Palfreyman MN, Raeburn D, Ratcliffe AJ, Soness JE, Thurairatnam S, Vicker N (1994) Selective type IV phosphodiesterase inhibitors as antiasthmatic agents. The syntheses and biological activities of 3-(cyclopentyloxy)-4-methoxybenzamides and analogs. J. Med. Chem. 37:1696–1703

    PubMed  CAS  Google Scholar 

  5. Tummino PJ, Harvey PJ, McQuade T, Domagala J, Gogliotti R, Sanchez J, Song Y, Hupe D (1997) The human immunodeficiency virus type1 (HIV-1) nucleocapsid protein zinc ejection activity of disulfide benzamides and benzisothiazolones: correlation with anti-HIV and virucidal activities. Antimicrob. Agents Chemother. 41:394–400

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Wajid S, Khatoon A, Khan MA, Zafar H, Kanwal S, Choudhary MI, Basha FZ (2019) Microwave-assisted organic synthesis, structure–activity relationship, kinetics and molecular docking studies of non-cytotoxic benzamide derivatives as selective butyrylcholinesterase inhibitors. Bioorg. Med. Chem. 27:4030–4040

    PubMed  CAS  Google Scholar 

  7. Seegers AJ, Jager LP, Zandberg P, van Noordwijk J (1981) The anti-inflammatory, analgesic and antipyretic activities of non-narcotic analgesic drug mixtures in rats. Arch. Int. Pharmacodyn. Ther. 251:237–254

    PubMed  CAS  Google Scholar 

  8. Velázquez F, Manríquez R, Maya L, Barrientos L, López-Dellamary F (2009) Phenacetin isolated from Bursera grandifolia, a herbal remedy with antipyretic properties. Nat. Prod. Commun. 4:1575–1576

    PubMed  Google Scholar 

  9. Clissold SP (1986) Paracetamol and phenacetin. Drugs 32:46–59

    PubMed  Google Scholar 

  10. Dolora P, Lodovici M, Salvadori M, Saltutti C, Rose AD, Selli C, Kriebel D (1998) Variations of cartisol hydoroxylation and paracetamol metabolism in patients with bladder carcinoma. Br. J. Urol. 62:419–426

    Google Scholar 

  11. Grimland K (1998) Phenacetin and renal damage at a Swedish factory. Acta Med. Scand. 174:1–26

    Google Scholar 

  12. Sicardi SM, Martiarena JL, Iglesias MT (1991) Mutagenic and analgesic activities of aniline derivatives. J. Pharm. Sci. 80:761–764

    PubMed  CAS  Google Scholar 

  13. FDA (1999) List of drug products that have been withdrawn or removed from the market for reasons of safety or effectiveness. Fed. Regist. 64:10944–10947 https://www.ncbi.nlm.nih.gov/pubmed/10557618

    Google Scholar 

  14. Kaufman DW, Kelly JP, Rosenberg L, Anderson TE, Mitchell AA (2002) Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 287:337–344

    PubMed  Google Scholar 

  15. Zhu H, Xu Z, **e D, Fang Y (2018) Graphene: fabrication, characterizations, properties and applications. Academic Press, London

    Google Scholar 

  16. Nicolai A, Sumpter BG, Meunier V (2014) Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16:8646–8654

    PubMed  CAS  Google Scholar 

  17. Martin MJ, May S, Mebberson N, Pendleton P, Vasileve K, Plush SE, Hayball JD (2017) Activated carbon, carbon nanotubes and graphene: materials and composites for advanced water purification. J. Carbon Res. 3:1–29

    Google Scholar 

  18. Reddy AVB, Moniruzzaman M, Reddy YVM, Madhavi G (2019) Graphene-based nanomaterials for the removal of pharmaceuticals in drinking water sources, in graphene-based nanotechnologies for energy and environmental applictions, pp. 329-358, Elsevier

  19. Al-Jumaili A, Alancherry S, Bazaka K, Jacob M (2017) Review on the antimicrobial properties of carbon nanostructures. Materials 10:1066

    PubMed Central  Google Scholar 

  20. Ahamadi R, Sarvestani MRJ, Sadeghi B (2018) Computational study of the fullerene effects on the properties of 16 different drugs: a review. Int. J. Nano Dimens. 9:325–335

    Google Scholar 

  21. Sun Q, Zhang R, Qiu J, Liu R, Xu W (2018) On-surface synthesis of carbon nanostructures. Adv. Mater. 30:1705630

    Google Scholar 

  22. El-Mahdy A (2016) Density functional investigation of CO and NO adsorption on TM-decorated C60 fullerene. Appl. Surf. Sci. 383:353–366

    CAS  Google Scholar 

  23. Lin IH, Lu YH, Chen HT (2017) Nitrogen doped C60 as a robust catalyst for CO oxidation. J. Comput. Chem. 38:2041–2046

    PubMed  CAS  Google Scholar 

  24. Hwang DG, Jeong E, Lee SG (2016) Density functional theory study of CH4 and CO2 adsorption by fluorinated graphene. Carbon Lett. 20:81–85

    Google Scholar 

  25. Zahedi E, Seif A (2011) Adsorption of NH3 and NO2 molecules on C48B6N6 heterofullerene: a DFT study on electronic properties. Phys. B 406:3704–3709

    CAS  Google Scholar 

  26. Ramachandran C, Sathyamurthy N (2007) Time dependent density functional theoretical study of the absorption properties of BN substituted C60 fullerenes. J. Phys. Chem. A 111:6901–6903

    PubMed  CAS  Google Scholar 

  27. Jiang Y, Wang J, Malfatti L, Carboni D, Senes N, Innocenzi P (2018) Highly durable graphene-mediated surface enhanced Raman scattering (G-SERS) nano composites for molecular detection. Appl. Surf. Sci. 450:451–460

    CAS  Google Scholar 

  28. Becke AD (1993) Density functional thermo chemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5652

    CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B37:785–789

    Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian, Inc, Wallingford

    Google Scholar 

  31. Keith T, Millam J (2009) Gaussview 5, Semichem. Inc. Shawnee Mission KS

  32. Al-Otaibi JS, Mary YS, Mary YS, Thomas R (2019) Quantum mechanical and photovoltaic studies on the cocrystals of hydrochlorothiazide with isonazid and malonamide. J. Mol. Struct. 1197:719–726

    CAS  Google Scholar 

  33. Bio-Rad Laboratories, Inc., SpectraBase; http://spectrabase.com/. Acessed 15 July 2019

  34. Chai JD, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 10:6615–6620

    CAS  PubMed  Google Scholar 

  35. Thomas R, Hossain M, Mary YS, Resmi KS, Armakovic S, Armakovic SJ, Nanda AK, Ranjan VK, Vijayakumar G, Van Alsenoy C (2018) Spectroscopic analysis and molecular docking of imidazole derivatives and investigation of its reactive properties by DFT and molecular dynamics simulations. J. Mol. Struct. 1158:156–175

    CAS  Google Scholar 

  36. Shafieyoon P, Mehdipour E, Mary YS (2019) Synthesis, characterization and biological investigation of glycine based sulfonamide derivative and its complex: vibration assignment, HOMO-LUMO analysis, MEP and molecular docking. J. Mol. Struct. 1181:244–252

    CAS  Google Scholar 

  37. Zhang T, Wei X, Zuo Y, Chao J (2019) An efficient measure to improve the NLO performance by point charge electric field. Optik 182:295–302

    CAS  Google Scholar 

  38. Mary YS, Mary YS, Thomas R, Narayana B, Samshuddin S, Saro**i BK, Aramkovic S, Armakovic SJ, Pillai GG (2019) Theoretical studies on the structure and various physic-chemical and biological properties of a terphenyl derivative with immense anti-protozoan activity. Polycycl. Aromat. Compd. https://doi.org/10.1080/10406638.2019.1624974

  39. Hossain M, Thomas R, Mary YS, Resmi KS, Aramkovic S, Armakovic SJ, Nanda AK, Vijayakumar G, Van Alsenoy C (2018) Understanding reactivity of two newly synthetized imidazole derivatives by spectroscopic characterization and computational study. J. Mol. Struct. 1158:176–196

    CAS  Google Scholar 

  40. Louazri L, Amine A, Bouzzine SM, Hamidi M, Bouachrine M (2016) Photovoltaic properties of Zn-complexed-phtalocyanine and derivatives for DSSCs application. J. Mater. Environ. Sci. 7:2305–2313

    CAS  Google Scholar 

  41. Ren XF, Zhang J, Kang GJ (2015) Theoretical studies of electronic structure and photophysical properties of a series of indoline dyes with triphenylamine ligand. J. Nanomater.:605727. https://doi.org/10.1155/2015/605728

  42. Chaitanya K, Ju XH, Heron BM (2015) Can elongation of the π-system in triarylamine derivated sensitizers with either benzothiadiazole and/or ortho-fluorophenyl moieties enrich their light harvesting efficiency? – a theoretical study. RSC Adv. 5:3978–3998

    CAS  Google Scholar 

  43. Mary YS, Ertan-Bolelli T, Thomas R, Krishnan AR, Bolelli K, Kasap EN, Onkol T, Yildiz I (2019) Quantum mechanical studies of three aromatic halogen-substituted bioactive sulfonamidobenzoxazole compounds with potential light harvesting properties. Polycycl. Aromat. Compd. https://doi.org/10.1080/10406638.2019.1689405

  44. Roeges NPG (1994) A guide to the complete interpretation of infrared spectra of organic structures. Wiley, New York

    Google Scholar 

  45. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26:163–166

    CAS  Google Scholar 

  46. Albrecht MG, Creighton JA (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99:5215–5217

    CAS  Google Scholar 

  47. Jeanmaire DL, Van Duyne RP (2006) Surface Raman spectro electrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84:1–20

    Google Scholar 

  48. Smith E, Dent G (2005) Modern Raman spectroscopy – a practical approach. https://doi.org/10.1002/0470011831

    Book  Google Scholar 

  49. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface enhanced Raman scattering (SERS). Phys. Rev. Lett. 78:1667–1670

    CAS  Google Scholar 

  50. Nie S, Emory SR (1997) Probing single molecules and single nano particles by surface enhanced Raman scattering. Science 275:1102–1106

    PubMed  CAS  Google Scholar 

  51. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306:666–669

    PubMed  CAS  Google Scholar 

  52. Sharma V, Som NN, Pillai SB, Jha PK (2020) Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: a new SERS platform. Spectrochim. Acta 224:117352

    CAS  Google Scholar 

  53. Al-Otaibi JS (2020) Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochim. Acta 235:118333

    CAS  Google Scholar 

  54. Lagunin A, Stepanchikova A, Filimonov D, Poroikov V (2000) PASS: prediction of activity spectra for biologically active substances. Bioinformatics 16:747–748

    PubMed  CAS  Google Scholar 

  55. Duhovny D, Nussinov R, Wolfson HJ (2000) Efficient unbound docking of rigid molecules, in: Gusfield et al. (Eds.), Proceedings of the second workshop on algorithms in bioinformatics (WABI) Rome, Italy, lecture notes in computer science, vo. 2452, Springer Verlag, pp.185-200

  56. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Patchdock and Symmdock: servers for rigid and symmetric docking. Nucleic Acids Res. 33:W363–W367

    PubMed  PubMed Central  CAS  Google Scholar 

  57. Mary YS, Mary YS, Resmi KS, Kumar VS, Thomas R, Sureshkumar B (2019) Detailed quantum mechanical, molecular docking, QSAR prediction, photovoltaic light harvesting efficiency analysis of benzil and its halogenated analogues. Heliyon 5:e2825

    Google Scholar 

  58. Mary YS, Mary YS, Resmi KS, Thomas R (2019) DFT and molecular docking investigations of oxicam derivatives. Heliyon 5:e02175

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank the Center for Promising Research in Social Research and Women’s Studies Deanship of Scientific Research, at Nourah bint Abdulrahman University, for funding this project in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sheena Mary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2894 kb).

ESM 2

(DOCX 49 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almuqrin, A.H., Al-Otaibi, J.S., Mary, Y.S. et al. Spectral analysis and detailed quantum mechanical investigation of some acetanilide analogues and their self-assemblies with graphene and fullerene. J Mol Model 26, 254 (2020). https://doi.org/10.1007/s00894-020-04485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04485-3

Keywords

Navigation