Log in

Significant ion conduction in Cu acceptor-substituted bismuth titanate polycrystalline ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports that Cu acceptor substitution at the Ti site has significant effects on structure and electrical properties of Aurivillius-phase Bi4Ti3O12 polycrystalline ceramics. Phase purity, microstructure and defect chemistry of Bi4Ti3−xCuxO12−x (BiT–100xCu, x = 0–0.12) are characterized by XRD, SEM, EDS and EPR measurements. Neutron diffraction refinement indicates that BiT–8Cu has an orthorhombic symmetry [space group: B2cb; lattice parameters: a = 5.4116(1) Å, b = 32.833(1) Å, c = 5.4479(1) Å and V = 967.98(5) Å3]. Impedance spectra of BiT–100xCu were measured under variable oxygen partial pressure (pO2). Bi4Ti3O12 shows mixed electronic (hole) and ionic conduction owing to the existence of oxygen vacancies (\( {\text{V}}_{\text{O}}^{ \cdot \cdot } \)) arising from the loss of Bi2O3 during sintering. Interestingly, bulk conductivity in Cu-substituted Bi4Ti3O12 ceramics is predominately ionic due to the fact that there are considerably additional oxygen vacancies introduced into the perovskite lattices. The optimum composition of BiT–8Cu shows high ionic conductivity in the bulk with a value of ~ 0.007 S/cm at 650 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Damjanovic D (1998) Dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61:1267

    CAS  Google Scholar 

  2. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 40(1):682–684

    Google Scholar 

  3. Lee HN, Hesse D, Zakharov N, Gosele U (2002) Ferroelectric Bi3.25La0.75Ti3O12 Films of uniform a-axis orientation on silicon substrates. Science 296:2006–2009

    CAS  Google Scholar 

  4. Irie H, Saito H, Ohkoshi S, Hashimoto K (2005) Enhanced ferroelectric properties of nitrogen-doped Bi4Ti3O12 thin films. Adv Mater 17:491–494

    CAS  Google Scholar 

  5. Yang BB, Guo MY, ** LH, Tang XW, Wei RH, Hu L, Yang J, Song WH, Dai JM, Lou XJ, Zhu XB, Sun YP (2018) Ultrahigh energy storage in lead-free BiFeO3/Bi3.25La0.75Ti3O12 thin film capacitors by solution processing. Appl Phys Lett 112:033904

    Google Scholar 

  6. Yan HX, Zhang HT, Reece MJ, Dong XL (2005) Thermal depoling of high curie point aurivillius phase ferroelectric ceramics. Appl Phys Lett 87:0829111

    Google Scholar 

  7. Cummins SE, Cross LE (1968) Electric and optical properties of ferroelectric Bi4Ti3O12 single crystals. J Appl Phys 39:2268–2274

    CAS  Google Scholar 

  8. Shulman HS, Damjanovic D, Setter N (2000) Niobium do** and dielectric anomalies in bismuth titanate. J Am Ceram Soc 83:528–532

    CAS  Google Scholar 

  9. Park BH, Hyun SJ, Bu SD, Noh TW, Lee J, Kim HD, Kim TH, Jo W (1999) Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Appl Phys Lett 74:1907–1909

    CAS  Google Scholar 

  10. Long CB, Fan HQ, Li MM, Dong GZ, Li Q (2014) Crystal structure and enhanced electro-mechanical properties of aurivillius ferroelectric ceramics, Bi4Ti3−x(Mg1/3Nb2/3)xO12. Scr Mater 75:70–73

    CAS  Google Scholar 

  11. Long CB, Chang Q, Fan HQ (2017) Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics. Sci Rep 7:4193

    Google Scholar 

  12. Tang YX, Shen ZY, Du QX, Zhao XY, Wang FF, Qin XM, Wang T, Shi WZ, Sun DZ, Zhou ZY, Zhang SJ (2018) Enhanced pyroelectric and piezoelectric responses in W/Mn-codoped Bi4Ti3O12 Aurivillius ceramics. J Eur Ceram Soc 38:5348–5353

    CAS  Google Scholar 

  13. Li XD, Chen ZN, Sheng LS, Li LL, Bai WF, Wen F, Zheng P, Wu W, Zheng L, Zhang Y (2019) Remarkable piezoelectric activity and high electrical resistivity in Cu/Nb co-doped Bi4Ti3O12 high temperature piezoelectric ceramics. J Eur Ceram Soc 39:2050–2057

    CAS  Google Scholar 

  14. Li XD, Chen ZN, Sheng LS, Du J, Bai WF, Li LL, Wen F, Zheng P, Wu W, Zheng L, Zhang Y (2019) Large enhancement of piezoelectric properties and resistivity in Cu/Ta co-doped Bi4Ti3O12 high-temperature piezoceramics. J Am Ceram Soc 102:7366–7375

    CAS  Google Scholar 

  15. Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337

    CAS  Google Scholar 

  16. Sengodan S, Choi S, Jun A, Shin H, Ju Y, Jeong H, Shin J, Irvine JTS, Kim G (2015) Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat Mater 14:205–209

    CAS  Google Scholar 

  17. Duan C, Tong J, Shang M, Nikodemski S, Sers M, Ricotel S, Almansoori A, O’Hayre R (2015) Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349:1321–1326

    CAS  Google Scholar 

  18. Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39:4370–4387

    CAS  Google Scholar 

  19. Punn R, Feteira AM, Sinclair DC, Greaves C (2006) Enhanced oxide ion conductivity in stabilized δ-Bi2O3. J Am Chem Soc 128:15386–15387

    CAS  Google Scholar 

  20. Sammes NM, Tompsett GA, Nafe H, Aldingera F (1999) Bismuth based oxide electrolytes-structure ionic conductivity. J Eur Ceram Soc 19:1801–1826

    CAS  Google Scholar 

  21. Garcia-Gonzalez E, Arribas M, Gonzalez-Calbet JM (2001) Short-range-long-range order transformation in the Bi4V2−xFexO11−y series. Chem Mater 13:96–102

    CAS  Google Scholar 

  22. Abrahams I, Krok F (2002) Defect chemistry of the bimevoxes. J Mater Chem 12:3351–3362

    CAS  Google Scholar 

  23. Abrahamsa I, Krokb F, Malysb M, Wrobel W (2005) A model for the mechanism of low temperature ionic conduction in divalent-substituted γ-BIMEVOXes. Solid State Ionics 176:2053–2058

    Google Scholar 

  24. Singh P, Goodenough JB (2013) Monoclinic Sr1−xNaxSiO3−0.5x: new superior oxide ion electrolytes. J Am Chem Soc 135:10149–10154

    CAS  Google Scholar 

  25. Singh P, Goodenough JB (2012) Sr1−xKxSi1−yGeyO3−0.5x: a new family of superior oxide-ion conductors. Energy Environ Sci 5:9626–9631

    CAS  Google Scholar 

  26. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, McEvoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cell. Nat Mater 3:17–27

    CAS  Google Scholar 

  27. Li M, Pietrowski MJ, De Souza RA, Zhang H, Reaney IM, Cook SN, Kilner JA, Sinclair DC (2014) A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat Mater 13:31–35

    CAS  Google Scholar 

  28. Yang F, Zhang HR, Li LH, Reaney IM, Sinclair DC (2016) High ionic conductivity with low degradation in A-site strontium doped nonstoichiometric sodium bismuth titanate perovskite. Chem Mater 28:5269–5273

    CAS  Google Scholar 

  29. Bhattacharyya R, Das S, Omar S (2018) High ionic conductivity of Mg2+-doped non-stoichiometric sodium bismuth titanate. Acta Mater 159:8–15

    CAS  Google Scholar 

  30. Takahashi M, Nguchi Y, Miyayama M (2002) Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn J Appl Phys 41:7053–7056

    CAS  Google Scholar 

  31. Takahashi M, Nguchi Y, Miyayama M (2004) Estimation of ionic and hole conductivity in bismuth titanate polycrystals at high temperatures. Solid State Ionics 172:325–329

    CAS  Google Scholar 

  32. **e X, Wang T, Zhou Z, Cheng G, Liang R, Dong X (2019) Enhanced piezoelectric properties and temperature stability of Bi4Ti3O12-based Aurivillius ceramics via W/Nb substitution. J Eur Ceram Soc 39:957–962

    CAS  Google Scholar 

  33. Hou JG, Kumar RV, Qu YF, Krsmanovic D (2009) B-site do** effect on electrical properties of Bi4Ti3−2xNbxTaxO12 ceramics. Scr Mater 61:664

    CAS  Google Scholar 

  34. Wang T, Liao Y, Wang D, Zheng Q, Liao J, **e F, Jie W, Lin D (2019) Cycling- and heating-induced evolution of piezoelectric and ferroelectric properties of CuO-doped K0.5Na0.5NbO3 ceramic. J Am Ceram Soc 102:351–361

    CAS  Google Scholar 

  35. Lotgering FK (1959) Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J Inorg Nucl Chem 9:113–123

    CAS  Google Scholar 

  36. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Google Scholar 

  37. Hashimoto T, Moriwake H (2008) Oxygen vacancy formation energy and its effect on spontaneous polarization in Bi4Ti3O12: a first-principles theoretical study. Phys Rev 78:092106

    Google Scholar 

  38. Withers RL, Thompson JG, Rae AD (1991) The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. J Solid State Chem 94:404–417

    CAS  Google Scholar 

  39. Sivakumar T, Itoh M (2011) Ferroelectric phase transitions in new Aurivillius oxides: Bi2+2xSr1−2xNb2−xScxO9. J Mater Chem 21:10865–10870

    CAS  Google Scholar 

  40. Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F (2000) Crystal structure and ferroelectric properties of ABi2Ta2O9 (Ca, Sr, and Ba). Phys Rev B 61:6559–6564

    CAS  Google Scholar 

  41. Fouskova A, Cross LE (1970) Dielectric properties of bismuth titanate. J Appl Phys 41(7):2834–2838

    CAS  Google Scholar 

  42. Islam MS (2002) Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154–155:75–85

    Google Scholar 

  43. Irvine JTS, Sinclair DC, West AR (1990) Electroceramics: Characterization by impedance spectroscopy. Adv Mater 2:132–138

    CAS  Google Scholar 

  44. Masó N, West AR (2012) Electrical properties of Ca-doped BiFeO3 ceramics: from p-type semiconduction to oxide-ion conduction. Chem Mater 24:2127–2132

    Google Scholar 

  45. Takahashi M, Nguchi Y, Miyayama M (2003) Effects of V-do** on mixed conduction properties of bismuth titanate single crystals. Jpn J Appl Phys 42:6222–6225

    CAS  Google Scholar 

  46. Li M, Zhang HR, Cook SN, Li LH, Kilner JA, Reaney IM, Sinclair DC (2015) Dramatic influence of A-site nonstoichiometry on the electrical conductivity and conduction mechanisms in the perovskite oxide Na0.5Bi0.5TiO3. Chem Mater 27:629–634

    CAS  Google Scholar 

  47. Jamnik J, Maier J (1999) Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. J Electrochem Soc 146(11):4183–4188

    CAS  Google Scholar 

  48. Yoon SH, Randall CA, Hur KH (2009) Effect of acceptor (Mg) concentration on the resistance degradation behavior in acceptor (Mg)-doped BaTiO3 bulk ceramics: I. Impedance analysis. J Am Ceram Soc 92(8):1758–1765

    CAS  Google Scholar 

  49. Lee S, Randall CA (2013) Determination of electronic and ionic conductivity in mixed ionic conductors: HiTEC and in situ impedance spectroscopy analysis of isovalent and aliovalent doped BaTiO3. Solid State Ionics 249–250:86–92

    Google Scholar 

  50. Kim N, Grey CP (2002) Probing oxygen motion in disordered anionic conductors with 17O and 51 V MAS NMR spectroscopy. Science 297:1317–1320

    CAS  Google Scholar 

  51. Islam MS (2000) Ionic transport in ABO3 perovskite oxides: a computer modelling tour. J Mater Chem 10:1027–1038

    CAS  Google Scholar 

  52. Kim N, Vannier RN, Grey CP (2005) Detecting different oxygen-ion jump pathways in Bi2WO6 with 1- and 2-dimensional 17O MAS NMR spectroscopy. Chem Mater 17:1952–1958

    CAS  Google Scholar 

  53. Ren XB (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91–94

    CAS  Google Scholar 

  54. Ke SM, Huang HT, Fan HQ, Lee HK, Zhou LM (2012) Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics. Appl Phys Lett 101:082901

    Google Scholar 

  55. Eichel RA (2011) Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Phys Chem Chem Phys 13:368–384

    CAS  Google Scholar 

  56. Eichel RA (2007) Defect structure of oxide ferroelectrics-valence state, site of incorporation, mechanisms of charge compensation and internal bias fields. J Electroceram 19:9–21

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51502346, 51332003, 51903197), the Postdoctoral Science Foundation of China (2017M623165 and 2019T120904). We thank Dr. Yuanhua **a (CAEP, Mianyang, China) for performing the neutron diffraction measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changbai Long or Wei Ren.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript. All the authors listed have approved the manuscript that is submitted. We declare that the work described is original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, C., Du, T. & Ren, W. Significant ion conduction in Cu acceptor-substituted bismuth titanate polycrystalline ceramics. J Mater Sci 55, 5715–5729 (2020). https://doi.org/10.1007/s10853-020-04431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04431-x

Navigation