Log in

Point defect chemistry of donor-doped bismuth titanate ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This communication reports on the defect chemistry at room temperature of barium (Ba) doped bismuth titanate (Bi4Ti3O12), emphasizing the influence of the point defects on its electrical properties. Pure and Ba doped Bi4Ti3O12 were prepared by a conventional solid-phase reaction technique. The addition of Ba into the crystal structure of Bi4Ti3O12 was monitored by X-ray diffraction measurements combined with Rietveld refinement studies where it was determined that Ba occupies the bismuth (Bi) lattice sites as well as the presence of oxygen vacancies (\(V_{O}^{{ \bullet \bullet }}\)). The characterization of the point defects was carried out using impedance and electron spin resonance spectroscopies where the results support the models of compensation mechanisms dominated by electrical positive charges \(({h^ \bullet })\) and oxygen vacancies (\(V_{O}^{{ \bullet \bullet }}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Baldi, R. Bez, G. Sandhu, Solid State Electron. 102, 2–11 (2014)

    Article  Google Scholar 

  2. A. Makarov, V. Sverdlov, S. Selberherr, Microelectron. Reliab. 52(4), 628–634 (2012)

    Article  Google Scholar 

  3. W. Arden, Mater. Sci. Eng: B 134(2–3), 104–108 (2006)

    Article  Google Scholar 

  4. W.M. Arden, Curr. Opin. Solid State Mater. Sci. 6, 371–377 (2002)

    Article  Google Scholar 

  5. P.J. Nair, C.-C. Chou, M.K. Qureshi, ACM Trans. Archit. Code. Optim. 11(1), 1–26 (2014)

    Article  Google Scholar 

  6. G. Kholatkar, F. Ambriz-Vargas, R. Thomas, R. Nouar, A. Sarkissian, C. Gomez-Yáñez, M.A. Gauthier, A. Ruediger, Appl. Phys. Lett. 110, 093106 (2017)

    Article  Google Scholar 

  7. C.D.T. Mikolajick, W. Hartner, I. Kasko, M.J. Kastner, N. Nagel, M. Moert, C. Mazure, Microelectron. Reliab. 41, 947–950 (2001)

    Article  Google Scholar 

  8. G. Kholatkar, F.Ambriz-Vargas,M. Broyer, A. Hadj-Youssef, R. Nouar, A. Sarkissian, M.A. Gauthier, A. Ruediger, R. Thomas, C. Gomez-Yáñez, ACS Appl. Mater. Interfaces 9(15), 13262–13268 (2017)

    Article  Google Scholar 

  9. D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, C.S. Hwang, Rep. Prog. Phys. 75(7), 076502 (2012)

    Article  Google Scholar 

  10. E.Y. Tsymbal, A. Gruverman, Nat. Mater. 12, 602–604 (2013)

    Article  Google Scholar 

  11. M.D. Losego, L.H. Jimison, J.F. Ihlefeld, J.-P. Maria, Appl. Phys. Lett. 86(17), 172906 (2005)

    Article  Google Scholar 

  12. N.A. Lomanova, M.V. Tomkovich, V.L. Ugolkov, V.V. Gusarov, Russ. J. Appl. Chem. 90(6), 831–837 (2017)

    Article  Google Scholar 

  13. V. Berbenni, C. Milanese, G. Bruni, A. Girella, A. Marini, J. Therm. Anal. Calorim. 126(3), 1507–1511 (2016)

    Article  Google Scholar 

  14. Y. Noguchi, T. Goto, M. Miyayama, A. Hoshikawa, T. Kamiyama, J. Electroceram. 21(1–4), 49–54 (2007)

    Google Scholar 

  15. Z.H. Bao, J.S. Zhu, Y.N. Wang, Mater. Lett. 56, 861–866 (2002)

    Article  Google Scholar 

  16. A. Wu, M.R. Soares, I.M. Miranda Salvado, P.M. Vilarinho, Mater. Res. Bull. 47(11), 3819–3824 (2012)

    Article  Google Scholar 

  17. M. Chen, Z.L. Liu, Y. Wang, C.C. Wang, X.S. Yang, K.L. Yao, Physica B 352(1–4), 61–65 (2004)

    Article  Google Scholar 

  18. A. Khokhar, M.L.V. Mahesh, A.R. James, P.K. Goyal, K. Sreenivas, J. Alloys Compd. 581, 150–159 (2013)

    Article  Google Scholar 

  19. M.C. Kao, H.Z. Chen, S.L. Young, B.N. Chuang, W.W. Jiang, J.S. Song, S.S. Jhan, J.L. Chiang, L.T. Wu, J. Cryst. Growth 338(1), 139–142 (2012)

    Article  Google Scholar 

  20. M.D.C. Martínez-Morales, C. Gómez-Yáñez, L.L. Rojas, Funct. Mater. Lett. 09 (06), 1642006 (2016)

    Article  Google Scholar 

  21. M. Paredes-Olguín, I.A. Lira-Hernández, C. Gómez-Yáñez, F.P. Espino-Cortés, Physica B 410, 157–161 (2013)

    Article  Google Scholar 

  22. T. Jardiel, A.C. Caballero, J.F. Fernández, M. Villegas, J. Eur. Ceram. Soc. 26(13), 2823–2826 (2006)

    Article  Google Scholar 

  23. F. Ambriz-Vargas, A. Romero-Serrano, J. Ortiz-Landeros, J. Crespo-Villegas, D. Ramírez-Rosales, C. Gómez-Yáñez, J. Mex. Chem. Soc. 61(4), 317–325 (2017)

    Google Scholar 

  24. D. Machura, J. Rymarczyk, J. Ilczuk, Eur. Phys. J. Spec. Top. 154(1), 131–134 (2008)

    Article  Google Scholar 

  25. T.G.Y. Noguchi, M. Miyayama, A. Hoshikawa, T. Kamiyama, J. Electroceram. 21, 49–54 (2008)

    Article  Google Scholar 

  26. J. Ortiz-Landeros, C. Gomez-Yanez, L.M. Palacios-Romero, E. Lima, H. Pfeiffer, J. Phys. Chem. A 116(12), 3163–3171 (2012)

    Article  Google Scholar 

  27. X.Q. Chen, F.J. Yang, W.Q. Cao, H. Wang, C.P. Yang, D.Y. Wang, K. Chen, Solid State Commun. 150, 1221–1224 (2010)

    Article  Google Scholar 

  28. I.A. Velasco-Davalos, A. Ruediger, J.J. Cruz-Rivera, C. Gomez-Yanez, J. Alloys Compd. 581, 56–58 (2013)

    Article  Google Scholar 

  29. Z. Chen, H. Jiang, W. **, C. Shi, Appl. Catal., B 180, 698–706 (2016)

    Article  Google Scholar 

  30. R.A. Golda, A. Marikani, D.P. Padiyan, Ceram. Int. 37(8), 3731–3735 (2011)

    Article  Google Scholar 

  31. A.Z. Simões, E.C. Aguiar, A. Ries, E. Longo, J.A. Varela, Mater. Lett. 61(2), 588–591 (2007)

    Article  Google Scholar 

  32. F. Yang, M. Li, L. Li, P. Wu, E. Pradal-Velazquez, D.C. Sinclair, J. Mater. Chem. A 6, 5243–5254 (2018)

    Article  Google Scholar 

  33. X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367–373 (2015)

    Article  Google Scholar 

  34. Y. Noguchi, K. Yamamoto, Y. Kitanaka, M. Miyayama, J. Eur. Ceram. Soc. 27(13–15), 4081–4084 (2007)

    Article  Google Scholar 

  35. R. Moos, K.H. Hardtl, J. Am. Ceram. Soc. 80(10), 2549–2562 (1997)

    Article  Google Scholar 

  36. I.P.B.S.M. Kornienko, M.D. Glinchuk, V.V. Laguta, A.G. Belous, L. Yastrabik, Phys. Solid State 41, 1838–1842 (1999)

    Article  Google Scholar 

  37. P. Jakes, E. Erdem, R.-A. Eichel, L. **, D. Damjanovic, Appl. Phys. Lett. 98(7), 072907 (2011)

    Article  Google Scholar 

  38. R.A. Eichel, Phys. Chem. Chem. Phys. 13(2), 368–384 (2011)

    Article  Google Scholar 

  39. V.V. Laguta, A.M. Slipenyuk, I.P. Bykov, M.D. Glinchuk, M. Maglione, D. Michau, J. Rosa, L. Jastrabik, Appl. Phys. Lett. 87(2), 022903 (2005)

    Article  Google Scholar 

  40. V.V. Laguta, A.M. Slipenyuk, I.P. Bykov, M.D. Glinchuk, M. Maglione, A.G. Bilous, O.I. V’yunov, J. Rosa, L. Jastrabik, J. Appl. Phys. 97(7), 073707 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Fonds de Recherché du Quebec-Nature et Technologies (FRQNT), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the National Science and Technology Council of Mexico (CONACyT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Ambriz-Vargas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 695 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambriz-Vargas, F., Crespo-Villegas, J., Zamorano-Ulloa, R. et al. Point defect chemistry of donor-doped bismuth titanate ceramic. J Mater Sci: Mater Electron 30, 2763–2771 (2019). https://doi.org/10.1007/s10854-018-0552-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0552-5

Navigation