Log in

Effect of simultaneous Ti and Nb do** on structure and ionic conductivity of Bi2V1−xTix/2Nbx/2O5.5−δ (0.1 ≤ x ≤ 0.25) ceramics

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Solid solution of general formula Bi2V1−xTix/2Nbx/2O5.5−δ (0.1 ≤ x ≤ 0.25) were synthesized and characterized by XRD, SEM, FTIR spectroscopy, and AC impedance spectroscopy. The detail XRD analysis reveals coexistence of two phases, i.e., β-orthorhombic and tetragonal at room temperature in these compounds. For lower x (˂ 0.15), β-orthorhombic phase dominates while at higher do** concentration tetragonal phase dominates with the optimum concentration of tetragonal phase for x = 0.15 composition. FTIR studies are in conformity with the observation of XRD results. SEM studies show decrease in average grain size with increase in dopants’ concentration. The impedance spectroscopy data were fitted with suitable equivalent circuit and circuit parameters were obtained. A correlation among crystal structure, surface morphology, and ionic conductivity was found. At low and intermediate temperature regime, highest conductivity was obtained for x = 0.15 and at high temperature region, it was for x = 0.1. The measured conductivity values are higher as compared to single doped Ti/Nb and parent compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boivin JC, Pirovano C, Nowogrocki G, Mairesse G, Labrune P, Lagrange G (1998) Electrode–electrolyte BIMEVOX system for moderate temperature oxygen separation. Solid State Ionics 113–115:639–651

    Article  Google Scholar 

  2. Löfberg A, Boujmiai S, Capoen E, Steil MC, Pirovano C, Vannier RN, Mairesse G, Bordes-Richard E (2004) Oxygen permeation versus catalytic properties of bismuth-based oxide ion conductors used for propene oxidation in a catalytic dense membrane reactor. Catal Today 91–92:79–83

    Article  CAS  Google Scholar 

  3. Al-Areqi NAS, Al-Kamali ASN, Ghaleb KAS, Al-Alas A, Al-Mureish K (2014) Influence of phase stabilization and perovskite vanadate oxygen vacancies of the BINIVOX catalyst on photocatalytic degradation of azo dye under visible light irradiation. Radiat Eff Defect Solids 169(2):117–128

    Article  CAS  Google Scholar 

  4. Kumar S, Sahare PD (2013) Photocatalytic activity of bismuth vanadate for the degradation of organic compounds. Nano 08(1):1350007

    Article  CAS  Google Scholar 

  5. Trzciński K, Borowska-Centkowska A, Sawczak M, Lisowska-Oleksiak A (2015) Photoelectrochemical properties of BIMEVOX (ME = Cu, Zn, Mn) electrodes in contact with aqueous electrolyte. Solid State Ionics 271:63–68

    Article  CAS  Google Scholar 

  6. Pasciak G, Prociow K, Mielcarek W, Gornicka B, Mazurek B (2001) Solid electrolytes for gas sensors and fuel cells applications. J Eur Ceram Soc 21:1867–1870

    Article  CAS  Google Scholar 

  7. Khaerudini DS, Guan G, Zhang P, Hao X, Abudula A (2014) Prospects of oxide ionic conductivity bismuth vanadate-based solid electrolytes. Rev Chem Eng 30:539–551

    Article  CAS  Google Scholar 

  8. Vannier RN, Pernot E, Anne M, Isnard O, Nowogrocki G, Mairesse G (2003) Bi4V2O11 polymorph crystal structures related to their electrical properties. Solid State Ionics 157:147–153

    Article  CAS  Google Scholar 

  9. Abraham F, Boivin JC, Mairesse G, Nowogrocki G (1990) The BIMEVOX series: a new family of high performances oxide ion conductors. Solid State Ionics 40(41):934–937

    Article  Google Scholar 

  10. Krok F, Abrahams I, Zadrozna A, Małys M, Bogusz W, Nelstrop JAG, Bush AJ (1999) Electrical conductivity and structure correlation in BIZNVOX. Solid State Ionics 119:139–144

    Article  CAS  Google Scholar 

  11. Lee CK, West AR (1996) Thermal behavior and polymorphism of BIMEVOX oxide ion conductors including the new materials: Bi4V2O11: M; M = La, Y, Mg, B. Solid State Ionics 86-88:235–239

    Article  CAS  Google Scholar 

  12. Krok F, Abrahams I, Malys M, Bogusz W, Dygas JR, Nelstrop JAG, Bush AJ (2000) Structural and electrical consequences of high dopant levels in the BIMGVOX system. Solid State Ionics 136–137:119–125

    Article  Google Scholar 

  13. Lazure S, Vernochet C, Vannier RN, Nowogrocki G, Mairesse G (1996) Composition dependence of oxide anion conduction in the BIMEVOX family. Solid State Ionics 90:117–123

    Article  CAS  Google Scholar 

  14. Paydar MH, Hadian AM, Fafilek G (2004) Ionic conductivity and crystal structure relationships in Ti/Cu substituted Bi4V2O11. J Mater Sci 39:1357–1361

    Article  CAS  Google Scholar 

  15. Emel’yanova YV, Tsygankova EN, Petrova SA, Buyanova ES, Zhukovskii VM (2007) Synthesis, structure, and conduction of solid solutions BIMEVOX (Me = Cu, Ti). Russ J Electrochem 47:737–741

    Article  CAS  Google Scholar 

  16. Buyanova ES, Petrova SA, Borodina YV E’y NA, Zakharov RG, Zhukovskii VM (2009) Crystal structure and conduction of BICUTIVOX. Russ J Inorg Chem 54:864–872

    Article  Google Scholar 

  17. Tripathy D, Pandey A (2018) Structural and impedance studies of TiIV and NbV co-doped bismuth vanadate system. J Alloys Compd 737:136–143

    Article  CAS  Google Scholar 

  18. Alga M, Ammar A, Essalim R, Tanouti B, outzourhit A, Mauvy F, Decort R (2005) Study on structural, thermal, sintering and conductivity of Cu-Co doubly substituted Bi4V2O11. Ionics 11:81–86

    Article  CAS  Google Scholar 

  19. Alga M, Ammar A, Tanouti B, Outzourhit A, Mauvy F, Decourt R (2005) Effect of niobium do** on structural, thermal, sintering and electrical properties of Bi4V1.8Cu0.2O10.7. J Solid State Chem 178:2873–2879

    Article  CAS  Google Scholar 

  20. Buyanova ES, Morozova MV, Emelyanova YV, Barikina YA, Petrova SA, Zaharov RG (2015) Synthesis, structure, and properties of BIFENBVOX. Ionics 21:2815–2823

    Article  CAS  Google Scholar 

  21. Kant R, Singh K, Pandey OP (2009) Microstructural and electrical behavior of Bi4V2-xCuxO11-δ (0 ≤x≤0.4). Ceram Int 35:221–227

    Article  CAS  Google Scholar 

  22. Al-Alas A, Beg S, Al-Areqi NAS (2012) Investigation of phase stability and oxide ion performance in new perovskite-type bismuth vanadate. Mater Chem Phys 136:15–20

    Article  CAS  Google Scholar 

  23. Kant R, Singh K, Pandey OP (2009) Ionic conductivity and structural properties of MnO-doped Bi4V2O11 system. Ionics 15:567–570

    Article  CAS  Google Scholar 

  24. Sooryanarayana K, Guru Row TN, Varma KBR (1999) Structural phase transitions in Bi2V1-xGexO5.5-x/2 (x = 0.2, 0.4, and 0.6) single crystals: x-ray crystallographic study. Mater Res Bull 34(3):425–432

    Article  CAS  Google Scholar 

  25. Muller C, Anne M, Bacmann M (1998) Lattice vibrations and order-disorder transition in the oxide anion conductor BICOVOX.15: a neutron thermo diffractometry study. Solid State Ionics 111:27–36

    Article  CAS  Google Scholar 

  26. Match! – phase identification from powder diffract – version 3, crystal impact, H. Putz, K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany, http://www.crystalimpact.com/match

  27. Bondarenko AS, Ragoish GA (2005) In: Pomerantsev AL (ed) Progress in chemometrics research. Nova Science Publishers, New York, pp 89–102 http://www.abc.chemistry.bsu.by/vi/analyser/

    Google Scholar 

  28. Yan J, Greenblatt M (1995) Ionic conductivities of Bi4V2–x MxO11–x/2 (M = Ti, Zr, Sn, Pb) solid solutions. Solid State Ionics 81:225–233

    Article  CAS  Google Scholar 

  29. Khaerudini DS, Guan G, Zhang P, Abudula A (2016) Oxide ion conductors based on niobium-doped bismuth vanadate: conductivity and phase transition features. Ionics 22:93–97

    Article  CAS  Google Scholar 

  30. Alga M, Ammar A, Essalim R, Tanouti B, Mauvy F, Decourt R (2005) Synthesis, sintering and electrical properties of P-doped Bi4V2O11 ceramics. Solid State Sci 7:1173–1179

    Article  CAS  Google Scholar 

  31. Zaki HM, Mansour SF (2006) X-ray and IR analysis of Cu-Si ferrite. J Phys Chem Solids 67:1643–1648

    Article  CAS  Google Scholar 

  32. Martin MC, Mecartney ML (2003) Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size. Solid State Ionics 161:67–79

    Article  CAS  Google Scholar 

  33. Bowman WJ, Zhu J, Sharma R, Crozier PA (2015) Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria. Solid State Ionics 272:9–17

    Article  CAS  Google Scholar 

  34. Kežionis A, Bogusz W, Krok F, Dygas J, Orliukas A, Abrahams I, Gebicki W (1999) Relaxation dispersion of ionic conductivity of BICOVOX. Solid State Ionics 119:145–150

    Article  Google Scholar 

  35. Beg S, Al-Areqi NAS, Al-Alas A, Hafeez S (2009) Influence of dopant concentration on the phase transition and ionic conductivity in BIHFVOX system. Physica B 404:2072–2079

    Article  CAS  Google Scholar 

  36. Heitjans P, Indris S (2003) Diffusion and ionic conduction in nanocrystalline ceramics. J Phys Condens Matter 15:R1257–R1289

    Article  CAS  Google Scholar 

  37. Tilley RJD (2016) Perovskites: structure-property relationships. John Willey and Sons, Ltd, Chichester, pp 157–175

  38. Abrahams I, Krok F, Malys M, Wrobel W (2005) Phase transition studies in BIMEVOX solid electrolytes using AC impedance spectroscopy. Solid State Ionics 176:2053–2058

    Article  CAS  Google Scholar 

  39. Zainullina VM, Zhukovskii VM, Buyanova ES, Emel’yanova YV (2007) Electronic structure and chemical bonding in oxygen conductors β-Bi4V2O11 and ϒ-Bi4V2O11. Russ J Inorg Chem 52:225–232

    Article  Google Scholar 

  40. Joubert O, Jouanneaux A, Ganne M, Vannier RN, Mairesse G (1994) Solid phase synthesis and characterization of new BIMEVOX series: Bi4V2–x MxO11 (M= SbV, NbV). Solid State Ionics 73:309–318

    Article  CAS  Google Scholar 

  41. Buyanova ES, Morozova MV, Emel’yanova YV, Petrova SA, Zakharovb RG, Zhukovskii VM (2013) Synthesis, structure, and conductivity of BINBVOX ceramics. Russ J Inorg Chem 58:259–264

    Article  CAS  Google Scholar 

  42. Abrahams I, Krok F, Malys M, Bush AJ (2001) Defect structure and ionic conductivity as a function of thermal history in BIMGVOX solid electrolytes. J Mater Sci 36:1099–1104

    Article  CAS  Google Scholar 

  43. Beg S, Al-Areqi NAS, Hafeez S, Al-Alas A (2015) Improved structural and electrical properties of nickel and aluminum co-doped Bi4V2O11 solid electrolyte. Ionics 21:421–428

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DST, New Delhi for providing FIST facility in the Physics department vide sanction order number SB/52/CMP-093/2013 for XRD and impedance studies. FTIR facility of SAIC, Tezpur University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, D., Saikia, A. & Pandey, A. Effect of simultaneous Ti and Nb do** on structure and ionic conductivity of Bi2V1−xTix/2Nbx/2O5.5−δ (0.1 ≤ x ≤ 0.25) ceramics. Ionics 25, 2221–2230 (2019). https://doi.org/10.1007/s11581-018-2622-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2622-3

Keywords

Navigation