Log in

Solgel-assisted synthesis of PVPO-TiO2 nanocomposites extended to bifunctionality as efficient electrode for enzymeless D-( +)-glucose sensing and antimicrobial potential

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A novel polyvinylpyrrolidone oxime and titanium dioxide nanocomposite (PVPO-TiO2 NC)-based enzymeless glucose sensing electrode was fabricated and characterized to evaluate its performance. A facile sol–gel approach was adopted to fabricate the NCs as a novel product. PVPO-TiO2 NCs were coated onto the surface of a graphite sheet electrode using a drop-casting method. The NCs and modified electrode were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), tunneling electron microscopy (TEM), and zeta potential measurements for their structural, morphological, and spectral analysis. The electrochemical behavior of the modified PVPO-TiO2/G electrode was studied by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). The modified electrode demonstrated high sensitivity of 62.79 µA/mMcm2, a low detection limit of 445.3 µM, and a linear range of 0–16 mM with a regression coefficient R2 = 0.982. Also, this composite electrode delivered good stability, anti-interference ability with species including fructose, ascorbic acid (AA), and uric acid (UA), and effective detection in common beverage samples. In addition, PVPO-TiO2 NCs effectively inhibited harmful pathogenic bacteria including Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Shigella flexneri in antimicrobial analysis. Subsequently, PVPO-TiO2 NCs, due to their dual functionality, proved to be an efficient glucose sensor as well as a good inhibitor against these problematic microbes. In this way, the novel composite obtained through this approach may be recommended to provide better performance, with bifunctional behavior toward both glucose sensing and inhibition of harmful microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lanzalaco S, Molina BG (2020) Polymers and plastics modified electrodes for biosensors: A review. Molecules 25(10):2446. https://doi.org/10.3390/molecules25102446

    Article  CAS  PubMed Central  Google Scholar 

  2. Tan SY, Mei Wong JL, Sim YJ, Wong SS et al (2018) Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr. https://doi.org/10.1016/j.dsx.2018.10.008

    Article  PubMed  Google Scholar 

  3. Gonzales WV, Mobashsher AT, Abbosh A (2019) The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors (Basel, Switzerland) 19(4):800. https://doi.org/10.3390/s19040800

    Article  CAS  Google Scholar 

  4. Bruen D, Delaney C, Florea L, Diamond D (2017) Glucose sensing for diabetes monitoring: Recent developments. Sensors (Switzerland) 17:1–21. https://doi.org/10.3390/s17081866

    Article  CAS  Google Scholar 

  5. Yang D, Deng X (2020) Recent Development and challenge of glucose sensing: a review. Front Med Sci Res 2(4):20–28. https://doi.org/10.25236/FMSR.2020.020403

    Article  Google Scholar 

  6. Lee I, Probst D, Klonoff D, Sode K (2021) Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research -. Biosens Bioelectron 181:113054. https://doi.org/10.1016/j.bios.2021.113054

    Article  CAS  PubMed  Google Scholar 

  7. Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49. https://doi.org/10.1007/s00604-017-2609-1

    Article  CAS  Google Scholar 

  8. Ridhuan NS, Nor NM, Razak KA (2021) ITO electrode modified with Pt nanodendrites-decorated ZnO nanorods for enzymatic glucose sensor. J Solid State Electrochem 25:1065–1072. https://doi.org/10.1007/s10008-020-04884-9

    Article  CAS  Google Scholar 

  9. Nguyen HH, Lee SH, Lee UJ et al (2019) Immobilized enzymes in biosensor applications. Materials (Basel) 12(1):121. https://doi.org/10.3390/ma12010121

    Article  CAS  Google Scholar 

  10. Shi X, Gu W, Li B, Chen N (2014) Enzymatic biosensors based on the use of metal oxide nanoparticles. Microchim Acta 181(1–2):1–22. https://doi.org/10.1007/s00604-013-1069-5

    Article  CAS  Google Scholar 

  11. Leong KL, Ho MY, Lee XY, Yee MSL (2020) A review on the development of non-enzymatic glucose sensor based on graphene-based nanocomposites. NANO. https://doi.org/10.1142/S1793292020300042

    Article  Google Scholar 

  12. Gong X, Gu Y, Zhang F et al (2019) High-performance non-enzymatic glucose sensors based on CoNiCu alloy nanotubes arrays prepared by electrodeposition. Front Mater 6:1–9. https://doi.org/10.3389/fmats.2019.00003

    Article  Google Scholar 

  13. Akrema R (2018) Metal Nanoparticles as Glucose Sensor. In: Khan Z (ed) Nanomaterials and Their Applications. Advanced Structured Materials, vol 84. Springer, Singapore. https://doi.org/10.1007/978-981-10-6214-8_5

  14. Noorhashimah MN, Ridhuan NS (2018) Metal Oxide Nanostructure-modified Electrode for Glucose Biosensor. In: Ahmad I (ed) Advanced Materials and their Applications: Micro to nano scale One Central Press (OCP) 31–38, 978–1–910086–21–6

  15. Yoon H (2013) Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 3(3):524–549. https://doi.org/10.3390/nano3030524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shrivastava S, Jadon N, Jain R (2016) Next generation polymer nanocomposites based electrochemical sensors and biosensors: a review. Trends Anal Chem 82(c):55–67. https://doi.org/10.1016/j.trac.2016.04.005

    Article  CAS  Google Scholar 

  17. Malode SJ, Basu S, Naveen S, Raghu V (2019) PT NU. Role of conducting polymer and metal oxide-based hybrids for applications in amperometric sensors and biosensors. Microchem J 147:7–24. https://doi.org/10.1016/j.microc.2019.02.061

    Article  CAS  Google Scholar 

  18. Wang H, Lee A (2015) ScienceDirect recent developments in blood glucose sensors. J Food Drug Anal 23:191–200. https://doi.org/10.1016/j.jfda.2014.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu C, Yang G, Li H et al (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  PubMed  Google Scholar 

  20. Yadav HM, Park JD, Kang HC, Lee JJ (2021) Recent development in nanomaterial-based electrochemical sensors for cholesterol detection. Chemosensors 9(5):98. https://doi.org/10.3390/chemosensors9050098

    Article  CAS  Google Scholar 

  21. George JM, Antony A, Mathew B (2018) Metal oxide nanoparticles in electrochemical sensing and biosensing : a review. Mikrochim Acta 185(7):358. https://doi.org/10.1007/s00604-018-2894-3

    Article  CAS  PubMed  Google Scholar 

  22. Arif D, Hussain Z, Sohail M et al (2020) A non-enzymatic electrochemical sensor for glucose detection based on Ag@TiO2@ metal-organic framework (ZIF-67) nanocomposite. Front Chem 8:845. https://doi.org/10.3389/fchem.2020.573510

    Article  CAS  Google Scholar 

  23. Baby TT, Ramaprabhu S (2010) SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor. Talanta 80:2016–2022. https://doi.org/10.1016/j.talanta.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  24. Dong H, Kyung S, Chang H et al (2012) Biosensors and bioelectronics a glucose biosensor based on TiO 2 – graphene composite. Biosens Bioelectron 38:184–188. https://doi.org/10.1016/j.bios.2012.05.033

    Article  CAS  Google Scholar 

  25. Zhou Z, Zhu Z, Cui F et al (2020) CuO / Cu composite nanospheres on a TiO2 nanotube array for amperometric sensing of glucose. Mikrochim Acta 187(2):123. https://doi.org/10.1007/s00604-019-4099-9

    Article  CAS  PubMed  Google Scholar 

  26. Abdi MM, Mohd Azli NFW, Lim HN et al (2018) Polypyrrole/tannin biobased nanocomposite with enhanced electrochemical and physical properties. RSC Adv 8:2978–2985. https://doi.org/10.1039/c7ra13378b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Majumdar S, Mahanta D (2020) RSC advances deposition of an ultra-thin polyaniline coating on a TiO2 surface by vapor phase polymerization for electrochemical glucose sensing and. RSC Adv 10(30):17387–17395. https://doi.org/10.1039/d0ra01571g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Saini N, Pahuja P, Lgaz H et al (2019) PVP oxime-TiO2-adenine as a hybrid material: Decent synthesis and depiction with advanced theoretical measurements for anticorrosive behavior and antibacterial potentiality. J Mol Liq 278:438–451. https://doi.org/10.1016/j.molliq.2019.01.054

    Article  CAS  Google Scholar 

  29. Kavuri HA, Kihara S, McGillivray DJ, Willmott G (2020) Poly(vinyl pyrrolidone)-modified metal oxide anode interlayers for stable organic solar cells. J Photonics Energy 10:1. https://doi.org/10.1117/1.jpe.10.042003

    Article  CAS  Google Scholar 

  30. Malik R, Lata S, Malik RS (2019) Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/ PSS) incorporated polypyrrole for supercapacitor. J Electroanal Chem 835:48–59. https://doi.org/10.1016/j.jelechem.2019.01.022

    Article  CAS  Google Scholar 

  31. Saini N, Kuma R, Pahuja P et al (2020) Exploring the capability of synthesized PVP-oxime for corrosion inhibition of a mild steel surface in a 1 M H2SO4 solution. Port Electrochim Acta 38:43–58. https://doi.org/10.4152/pea.202001043

    Article  CAS  Google Scholar 

  32. Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3:47–66. https://doi.org/10.1080/20550324.2017.1329983

    Article  CAS  Google Scholar 

  33. Radhakrishnan S, Ganesan V, Kim J (2020) Voltammetric nonenzymatic sensing of glucose by using a porous nanohybrid composed of CuS@SiO2 spheres and polypyrrole. Microchim Acta 187(5):260. https://doi.org/10.1007/s00604-020-04227-5

    Article  CAS  Google Scholar 

  34. Sebe I, Szabó B, Nagy ZK et al (2013) Polymer structure and antimicrobial activity of polyvinylpyrrolidone-based iodine nanofibers prepared with high-speed rotary spinning technique. Int J Pharm 458:99–103. https://doi.org/10.1016/j.ijpharm.2013.10.011

    Article  CAS  PubMed  Google Scholar 

  35. Koczkur KM, Mourdikoudis S, Polavarapu L et al (2015) Polyvinylpyrrolidone ( PVP ) in nanoparticle synthesis. Dalton Trans RSC 44:17883–17905. https://doi.org/10.1039/C5DT02964C

    Article  CAS  Google Scholar 

  36. Maruthapandi M, Saravanan A, Luong JHT, Gedanken A (2020) Antimicrobial properties of the polyaniline composites against pseudomonas aeruginosa and klebsiella pneumoniae. J Funct Biomater 11(3):59. https://doi.org/10.3390/jfb11030059

    Article  CAS  PubMed Central  Google Scholar 

  37. Sridhar BC, Gunvanthrao Yernale N, Prasad MVNA (2016) Synthesis, spectral characterization, and antibacterial and antifungal studies of PANI/V2O5 nanocomposites. Int J Chem Eng 2016:1–7. https://doi.org/10.1155/2016/3479248

    Article  CAS  Google Scholar 

  38. Padmaja GV (2019) A review on preparation of poly -N -vinyl pyrrolidone oxime and study of its structural and physicochemical properties. IJSAR 2(7):86–98

    Google Scholar 

  39. Vasudevan P, Thomas S, Biju PR et al (2012) Synthesis and structural characterization of sol-gel derived titania/poly (vinyl pyrrolidone) nanocomposites. J Sol-Gel Sci Technol 62:41–46. https://doi.org/10.1007/s10971-012-2680-3

    Article  CAS  Google Scholar 

  40. Lusvardi G, Barani C, Giubertoni F, Paganelli G (2017) Synthesis and characterization of TiO2 nanoparticles for the reduction of water pollutants. Materials 10:1–11. https://doi.org/10.3390/ma10101208

    Article  CAS  Google Scholar 

  41. Zheng MP, ** YP, ** GL, Gu MY (2000) Characterization of TiO2-PVP nanocomposites prepared by the sol-gel method. J Mater Sci Lett 19:433–436. https://doi.org/10.1023/A:1006703224379

    Article  CAS  Google Scholar 

  42. Dhatarwal P, Sengwa RJ (2021) Poly(vinyl pyrrolidone) matrix and SiO2, Al2O3, SnO2, ZnO, and TiO2 nanofillers comprise biodegradable nanocomposites of controllable optical properties for optoelectronic applications. Optik 241:167215. https://doi.org/10.1016/j.ijleo.2021.167215

    Article  CAS  Google Scholar 

  43. Arul Hency Sheela J, Lakshmanan S, Manikandan A, Arul Antony S (2018) Preparation and characterizations of PVP–TiO2 NPs calcined at 500, 600 and 700 °C by the hydrothermal method and their properties. J Inorg Organomet Polym Mater 28:2036–2045. https://doi.org/10.1007/s10904-018-0872-1

    Article  CAS  Google Scholar 

  44. Sionkowska A, Kozlowska J, Planecka A, Skopinska-Wisniewska J (2008) Photochemical stability of poly(vinyl pyrrolidone) in the presence of collagen. Polym Degrad Stab 93:2127–2132. https://doi.org/10.1016/j.polymdegradstab.2008.08.010

    Article  CAS  Google Scholar 

  45. Weirich TE, Winterer M, Seifried S et al (2000) Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy 81(3–4):263–270. https://doi.org/10.1016/S0304-3991(99)00189-8

    Article  CAS  PubMed  Google Scholar 

  46. Zheng MP, Gu MY, ** YP et al (2001) Effects of PVP on structure of TiO2 prepared by the sol-gel process. Mater Sci Eng B: Solid-State Mater Adv Technol 87:197–201. https://doi.org/10.1016/S0921-5107(01)00743-7

    Article  Google Scholar 

  47. Shepa I, Mudra E, Pavlinak D et al (2020) Surface plasma treatment of the electrospun TiO2/PVP composite fibers in different atmospheres. Appl Surf Sci 523:1–30. https://doi.org/10.1016/j.apsusc.2020.146381

    Article  CAS  Google Scholar 

  48. Song G, Gao Y, Wu H et al (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152. https://doi.org/10.1002/etc.1933

    Article  CAS  PubMed  Google Scholar 

  49. Nakatuka Y, Yoshida H, Fukui K, Matuzawa M (2015) The effect of particle size distribution on effective zeta-potential by use of the sedimentation method. Adv Powder Technol 26:650–656. https://doi.org/10.1016/j.apt.2015.01.017

    Article  CAS  Google Scholar 

  50. Govindaraj R, Pandian SM, Ramasamy P, Mukhopadhyay S (2015) Sol-gel synthesized mesoporous anatase titanium dioxide nanoparticles for dye sensitized solar cell (DSSC) applications. Bull Mater Sci 38:291–296. https://doi.org/10.1007/s12034-015-0874-3

    Article  CAS  Google Scholar 

  51. Vasudevan P, Thomas S, Arunkumar KV et al (2015) Synthesis and dielectric studies of poly (vinyl pyrrolidone) / titanium dioxide nanocomposites. IOP Conf Series: Mater Sci Eng 73:012015-. https://doi.org/10.1088/1757-899X/73/1/012015

  52. Xu J, Yang K, Zhang X et al (2021) TiO2 / CeO2 -CePO4 -decorated enzymatic glucose biosensors operating in oxygen-restrictive environments. J Solid State Electrochem 25:1937–1947. https://doi.org/10.1007/s10008-021-04956-4

    Article  CAS  Google Scholar 

  53. Zhu H, Li L, Zhou W et al (2016) Advances in non-enzymatic glucose sensors based on metal oxides. J Mater Chem B 4:7333–7349. https://doi.org/10.1039/C6TB02037B

    Article  CAS  PubMed  Google Scholar 

  54. Di Valentin C, Finazzi E, Pacchioni G et al (2007) N-doped TiO2: Theory and experiment. Chem Phys 339:44–56. https://doi.org/10.1016/j.chemphys.2007.07.020

    Article  CAS  Google Scholar 

  55. Zhu J, Liu X, Wang X et al (2015) Sensors and Actuators B: Chemical Preparation of polyaniline – TiO2 nanotube composite for the development of electrochemical biosensors. Sens Actuators, B Chem 221:450–457. https://doi.org/10.1016/j.snb.2015.06.131

    Article  CAS  Google Scholar 

  56. Al-mokaram AMAAA, Yahya R, Abdi MM et al (2017) The development of non-enzymatic glucose biosensors based on electrochemically prepared polypyrrole – chitosan – titanium dioxide nanocomposite films. Nanomaterials 7(6):129-. https://doi.org/10.3390/nano7060129

    Article  CAS  PubMed Central  Google Scholar 

  57. Soltani N, Saion E, Erfani M et al (2012) Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles synthesized by microwave irradiation. Int J Mol Sci 13:12412–12427. https://doi.org/10.3390/ijms131012412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sattarahmady N, Heli H (2012) A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles. J Exp Nanosci 7:529–546. https://doi.org/10.1080/17458080.2010.539275

    Article  CAS  Google Scholar 

  59. Baig N, Kawde A, Elgamouz A, Morsy M et al (2022) Graphene nanosheet-sandwiched platinum nanoparticles deposited on a graphite pencil electrode as an ultrasensitive sensor for dopamine. RSC Adv 12:2057. https://doi.org/10.1039/D1RA08464J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Othmani A, Derbali M, Kalfat R et al (2021) A novel 1D/2D Bi2S3/g-C3N4 core–shell nanocomposite as a highly performing H2O2 non-enzymatic electrochemical sensor. J Market Res 15:5762–5775. https://doi.org/10.1016/j.jmrt.2021.10.140

    Article  CAS  Google Scholar 

  61. Dewan A, Haldar S, Narayanan R (2021) Multi-shelled NiO hollow microspheres as bifunctional materials for electrochromic smart window and non-enzymatic glucose sensor. J Solid State Electrochem 25:821–830. https://doi.org/10.1007/s10008-020-04861-2

    Article  CAS  Google Scholar 

  62. de Faria RAD, Iden H, Dias Heneine LG et al (2019) Non-enzymatic impedimetric sensor based on 3-aminophenylboronic acid functionalized screen-printed carbon electrode for highly sensitive glucose detection. Sensors (Switzerland) 19(7):1686. https://doi.org/10.3390/s19071686

    Article  CAS  Google Scholar 

  63. Panahi S, Es’Haghi M (2018) Preparation and electrochemical characterization of PANI/MnCo2O4 nanocomposite as supercapacitor electrode material. Can J Chem 96:477–483. https://doi.org/10.1139/cjc-2017-0423

    Article  CAS  Google Scholar 

  64. Mazaheri M, Aashuri H, Simchi A (2017) Three-dimensional hybrid graphene/nickel electrodes on zinc oxide nanorod arrays as non-enzymatic glucose biosensors. Sens Actuators, B Chem 251:462–471. https://doi.org/10.1016/j.snb.2017.05.062

    Article  CAS  Google Scholar 

  65. Ahmad R, Vaseem M, Tripathy N, Hahn YB (2013) Wide linear-range detecting nonenzymatic glucose biosensor based on CuO nanoparticles inkjet-printed on electrodes. Anal Chem 85:10448–10454. https://doi.org/10.1021/ac402925r

    Article  CAS  PubMed  Google Scholar 

  66. Marimuthu T, Mohamad S, Alias Y (2015) Needle-like polypyrrole – NiO composite for non-enzymatic detection of glucose. Synth Met 207:35–41. https://doi.org/10.1016/j.synthmet.2015.06.007

    Article  CAS  Google Scholar 

  67. Bilal S, Ullah W, Shah AA (2018) Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim Acta 284:382–391. https://doi.org/10.1016/j.electacta.2018.07.165

    Article  CAS  Google Scholar 

  68. Liu Z, Guo Y, Dong C (2015) A high performance nonenzymatic electrochemical glucose sensor based on polyvinylpyrrolidone–graphene nanosheets–nickel nanoparticles–chitosan nanocomposite. Talanta 137:87–93. https://doi.org/10.1016/j.talanta.2015.01.037

    Article  CAS  PubMed  Google Scholar 

  69. Le HV (2020) Electrochemical preparation of polyaniline- supported Cu-CuO core-shell on 316L stainless steel electrodes for nonenzymatic glucose sensor. Adv Polym Technol 2020:6056919. https://doi.org/10.1155/2020/6056919

    Article  CAS  Google Scholar 

  70. Khanmohammadi S, Karimian R, Hajibonabi F et al (2018) Polythiophene/TiO2 and Polythiophene/ZrO2 nanocomposites: Physical and antimicrobial properties against common infections. J OA Biointerface Res Appl Chem 8(4):3457–3462

    CAS  Google Scholar 

  71. Ebrahimiasl S, Zakaria A, Kassim A, Norleha BS (2015) Novel conductive polypyrrole / zinc oxide / chitosan bionanocomposite : synthesis, characterization, antioxidant, and antibacterial activities. Int J Nanomedicine 10(1):217–227. https://doi.org/10.2147/IJN.S69740

    Article  CAS  PubMed  Google Scholar 

  72. Mohsen RM, Morsi SMM, Selim MM et al (2019) Electrical, thermal, morphological, and antibacterial studies of synthesized polyaniline/zinc oxide nanocomposites. Polym Bull 76:1–21. https://doi.org/10.1007/s00289-018-2348-4

    Article  CAS  Google Scholar 

  73. Tafreshinejad SA, Pishvaei M, Soleimani-Gorgani A (2020) Synthesis of antibacterial conductive polypyrrole/titanium dioxide core–shell nanocomposites. Polym Sci - Series B 62:137–143. https://doi.org/10.1134/s1560090420020074

    Article  CAS  Google Scholar 

  74. Samzadeh-Kermani A, Mirzaee M, Ghaffari-Moghaddam M (2016) Polyvinyl alcohol/polyaniline/zno nanocomposite: Synthesis, characterization and bactericidal property. Adv Biol Chem 06:1–11. https://doi.org/10.4236/abc.2016.61001

    Article  Google Scholar 

  75. Ventura EE, Davis JN, Goran MI (2009) Sugar content of popular sweetened beverages based on objective laboratory analysis: focus on fructose content. Obesity 19:868–874. https://doi.org/10.1038/oby.2010.255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CSIR, Delhi, India, for providing a fellowship to Meena (award letter no. 16/06/2019(i) EU-V) and Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Lata.

Ethics declarations

Conflict of interests

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, M., Singh, G. & Lata, S. Solgel-assisted synthesis of PVPO-TiO2 nanocomposites extended to bifunctionality as efficient electrode for enzymeless D-( +)-glucose sensing and antimicrobial potential. J Solid State Electrochem 26, 2153–2170 (2022). https://doi.org/10.1007/s10008-022-05216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-022-05216-9

Keywords

Navigation