Log in

Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Cryoconite holes have biogeochemical, ecological and biotechnological importance. This communication presents results on culturable psychrophilic bacterial diversity from cryoconite holes at Midre Lovénbreen (ML), Austre Brøggerbreen (AB), and Vestre Brøggerbreen (VB) glaciers. The culturable bacterial count ranged from 2.7 × 103 to 8.8 × 104 CFUs/g while the total bacterial numbers ranged from 5.07 × 105 to 1.50 × 106 cells at the three glaciers. A total of 35 morphologically distinct bacterial isolates were isolated. Based on 16S rRNA gene sequence data, the identified species belonged to eight genera namely Pseudomonas, Polaromonas, Micrococcus, Subtercola, Agreia, Leifsonia, Cryobacterium and Flavobacterium. The isolates varied in their growth temperature, NaCl tolerance, growth pH, enzyme activities, carbon utilization and antibiotic sensitivity tests. Fatty acid profiles indicate the predominance of branched fatty acids in the isolates. To the best of our knowledge, this is the first record of culturable bacterial communities and their characterization from glacier cryoconites from High Arctic. High amylase and protease activities expressed by Micrococcus sp. MLB-41 and amylase, protease and lipase activities expressed by Cryobacterium sp. MLB-32 provide a clue to the potential applications of these organisms. These cold-adapted enzymes may provide an opportunity for the prospect of biotechnology in Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abyzov S, Mitskevich I, Poglazova M (1998) Microflora of the deep glacier horizons of Central Antarctica. Microbiol 67:66–73

    Google Scholar 

  • Anesio AM, Mindl B, Laybourn-Parry J, Hodson AJ, Sattler B (2007) Viral dynamics in cryoconite holes on a high Arctic glacier (Svalbard). J Geophys Res 112:G04S31

    Google Scholar 

  • Anesio AM, Hodson AJ, Fritz A, Psenner R, Sattler B (2009) High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biol 15:955–960

    Article  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bagshaw EA, Tranter M, Wadham JL, Fountain AG, Mowlem M (2011) High-resolution monitoring reveals dissolved oxygen dynamics in an Antarctic cryoconite hole. Hydrol Process 25:2868–2877

    Article  CAS  Google Scholar 

  • Bakermans C, Tsapin AI, Souza-Egipsy V, Gilichinsky DA, Nealson KH (2003) Reproduction and metabolism at −10°C of bacteria isolated from Siberian permafrost. Environ Microbiol 5:321–326

    Article  PubMed  Google Scholar 

  • Bauer AW, Kirby MM, Sherris JC, Truck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Cameron KA, Hodson AJ, Osborn AM (2011) Structure and diversity of bacterial, eukaryotic and Archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol 82:254–267. doi:10.1111/j.1574-6941.2011.01277.x

    Article  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642

    CAS  Google Scholar 

  • Christner BC, Kvitko BH, Reeve JN (2003) Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183

    CAS  PubMed  Google Scholar 

  • Donderski W, Mudryk Z, Walczak M (1998) Utilization of low molecular weight organic compounds by marine neustonic and planktonic bacteria. Pol J Environ Stud 7:279–283

    CAS  Google Scholar 

  • Edwards A, Anesio AM, Rassner SM, Sattler B, Hubbard B, Perkins WT, Young M, Griffith GW (2011) Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J 5:150–160

    Article  PubMed  Google Scholar 

  • Edwards A, Rassner SME, Anesio AM, Worgan HJ, Irvine-Fynn TDL, Williams HW, Sattler B, Griffith GW (2013) Contrasts between the cryoconite and ice-marginal bacterial communities of Svalbard glaciers. Polar Res 32:19468. doi:10.3402/polar.v32i0.19468

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Foreman CM, Sattler B, Mikucki JA, Porazinska DL, Priscu JC (2007) Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J Geophys Res 112:G04S32. doi:10.1029/.2006JG000358

  • Fountain AG, Nylen TH, Tranter M, Bagshaw E (2008) Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. J Geophys Res 113:G01S92. doi: 10.1029/2007JG000430

  • Gerdel RW, Drouet F (1960) The cryoconite of the Thule Area, Greenland. Trans Am Microsc Soc 79:256–272

    Article  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  CAS  PubMed  Google Scholar 

  • Hagen JO, Satrang A (1991) Radio-echo soundings of sub-polar glaciers with low-frequency radar. Polar Res 9:99–107

    Article  Google Scholar 

  • Hagen JO, Kohler J, Melvold K, Winther JG (2003) Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res 22:145–159

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological Statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Harding T, Jungblut AD, Lovejoy C, Vincent WF (2011) Microbes in high Arctic snow and implications for the cold biosphere. Appl Environ Microbiol 77:3234–3243. doi:10.1128/AEM.02611-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodson A, Anesio AM, Ng F, Watson R, Quirk J, Irvine-Fynn T., Dye A, Clark C, McCloy P, Kohler J, Sattler B (2007) A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J Geophys Res 112:G04S36. doi: 10.1029/2007JG000452

  • Hodson A, Anesio AM, Tranter M, Fountain A, Osborn M, Priscu J, Laybourn-Parry J, Sattler B (2008) Glacial ecosystems. Ecol Monogr 78:41–67

    Article  Google Scholar 

  • Hodson A, Cameron K, Bøggild C, Irvine-fynn T, Langford H, Pearce D, Banwart S (2010) The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J Glaciol 56:349–361

    Article  CAS  Google Scholar 

  • Jiang HL, Tay STL, Maszenan AM, Tay JH (2006) Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiol Ecol 57:182–191

    Article  CAS  PubMed  Google Scholar 

  • Kastovska K, Elster J, Stibal M, Santruckova H (2005) Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (High Arctic). Microbial Ecol 50:396–407

    Article  Google Scholar 

  • Konieczna I, Wojtasik B, Kwinkowski M, Burska D, Nowinski K, Żarnowiec P, Kaca W (2011) Analysis of cultivable aerobic bacteria isolated from bottom sediments in the Wijdefjorden region, Spitsbergen. Pol Polar Res 32:181–195

    Google Scholar 

  • Kuwae T, Hosokawa Y (1999) Determination of abundance and biovolume of bacteria in sediments by dual staining with 4′,6-diamidino-2-phenylindole and Acridine Orange: relationship to dispersion treatment and sediment characteristics. Appl Environ Microbiol 65:3407–3412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee YM, Kim S-Y, Jung J, Kim EH, Cho KH, Schinner F, Margesin R, Hong SG, Lee HK (2011) Cultured bacterial diversity and Human impact on Alpine glacier Cryoconite. J Microbiol 49:355–362

    Article  CAS  PubMed  Google Scholar 

  • Leslie A (1879) The Arctic Voyages of A E Nordenskjöld. MacMillan and Co., London

    Google Scholar 

  • Martinez JL (2012) Natural antibiotic resistance and contamination by antibiotic resistance determinants: the two ages in the evolution of resistance to antimicrobials. Front Microbiol 3:1. doi:10.3389/fmicb.2012.00001

    PubMed Central  PubMed  Google Scholar 

  • McIntyre NF (1984) Cryoconite hole thermodynamics. Can J Earth Sci 21:152–156

    Article  Google Scholar 

  • Mudryk ZJ, Podgórska B, Dwulit M (2005) Bacterial utilization of amino acids and carbohydrates in a marine beach. Baltic Coast Zone 9:29–41

    Google Scholar 

  • Mueller DR, Pollard WH (2004) Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biol 27:66–74

    Article  Google Scholar 

  • Mueller DR, Vincent WF, Pollard WH, Fritsen CH (2001) Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwig Beih 123:173–197

    Google Scholar 

  • Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  CAS  PubMed  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Elsevier, New York

    Google Scholar 

  • Porazinska DL, Fountain AG, Nylen TH, Tranter M, Virginia RA, Wall DH (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic Antarctic Alpine Res 36:84–91

    Article  Google Scholar 

  • Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Reddy PVV, Rao SSSN, Pratibha MS, Sailaja B, Kavya B, Manorama RR, Singh SM, Srinivas TNR, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midre Lovénbreen glacier, an Arctic glacier. Res Microbiol 160:538–546

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sala MM, Arin L, Balagué V, Felipe J, Guadayol Ò, Vaqué D (2005) Functional diversity of bacterioplankton assemblages in western Antarctic seawaters during late spring. Mar Ecol Prog Ser 292:13–21

    Article  CAS  Google Scholar 

  • Sala MM, Terrado R, Lovejoy C, Unrein F, Pedros-Alio C (2008) Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ Microbiol 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol 33:1683–1694. doi:10.1007/s00300-010-0808-x

    Article  Google Scholar 

  • Säwström C, Mumford P, Marshall W, Hodson A, Laybourn-parry J (2002) The microbial communities and primary productivity of cryoconite holes in Arctic glacier (Svalbard 79°N). Polar Biol 25:591–596

    Google Scholar 

  • Segawa T, Takeuchi N, Rivera A, Yamada A, Yoshimura Y, Barcaza G, Shinbori K, Motoyama H, Kohshima S, Ushida K (2012) Distribution of antibiotic resistance genes in glacier environments. Environ Microbiol Rep 5:127–134. doi:10.1111/1758-2229.12011

    Article  PubMed  Google Scholar 

  • Shivaji S, Kiran MD, Chintalapati S (2007) Perception and Transduction of Low Temperature in Bacteria. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC, pp 194–207

    Google Scholar 

  • Shivaji S, Begum Z, Rao SSSN, Reddy PVV, Manasa P, Sailaja B, Prathiba MS, Thamban M, Krishnan KP, Singh SM, Srinivas TN (2013) Antarctic ice core samples: culturable bacterial diversity. Res Microbiol 164:70–82. doi:10.1016/j.resmic.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Singh SM (2011) Characterization of yeast and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biol 35:575–583

    Article  Google Scholar 

  • Singh SM, Sharma J, Gawas-Sakhalkar P, Upadhyay AK, Pedneker SM, Ravindra R (2012) Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environ Monit Assess 185:1367–1376. doi:10.1007/s10661-012-2638-5

    Article  PubMed  Google Scholar 

  • Sjolund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, Kahlmeter G, Olsen B (2008) Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis 14:70–72

    Article  PubMed  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterisation. In: Gerhardt P, Murray GGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Srinivas TNR, Rao SSSN, Reddy PVV, Pratibha MS, Sailaja B, Kavya B, Kishore KH, Begum Z, Singh SM, Shivaji S (2009) Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Alesund, Svalbard, Arctic. Curr Microbiol 59:537–547

    Article  CAS  PubMed  Google Scholar 

  • Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG (2007) Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol 59:513–523

    Article  CAS  PubMed  Google Scholar 

  • Stibal M, Šabacká M, Kaštovská K (2006) Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb Ecol 52:644–654

    Article  PubMed  Google Scholar 

  • Stibal M, Tranter M, Benning LG, Rehák J (2008) Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ Microbiol 10:2172–2178

    Article  CAS  PubMed  Google Scholar 

  • Stibal M, Šabackà M, Žàrský J (2012) Biological processes on glacier and ice sheet surfaces. Nat Geosci 5:771–774. doi:10.1038/ngeo1611

    Article  CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Goto-Azuma K, Korner RM (2001) Biological characteristics of dark coloured material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem Natl Inst Polar Res 54:495–505

    Google Scholar 

  • Takeuchi N, Nishiyama H, Li Z (2010) Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Ann Glaciol 51:9–14

    Article  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tranter M, Fountain AG, Fritsen CH, Lyons WB, Priscu JC, Statham PJ, Welch KA (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol Process 18:379–387

    Article  Google Scholar 

  • Vincent WF, Howard-Williams C (1994) Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica. Antarct Sci 87:339–346

    Google Scholar 

  • Wharton RA Jr, McKay CP, Simmons GM Jr, Parker BC (1985) Cryoconite holes on glaciers. Bioscience 35:499–503

    Article  PubMed  Google Scholar 

  • **ang S, Yao T, An L, Xu B, Wang J (2005) 16S rRNA sequences and differences in bacteria isolated Muztag Ata Glacier at increasing depths. Appl Environ Microbiol 71:4619–4627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Simpson AJ, Eyles N, Simpson MJ (2010) Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Org Geochem 41:177–186

    Article  CAS  Google Scholar 

  • Yallop ML, Anesio AM (2010) Benthic diatom flora in supraglacial habitats: a generic-level comparison. Ann Glaciol 51:15–22

    Article  Google Scholar 

  • Yu Y, Li HR, Zeng YX, Chen B (2009) Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biol 32:1539–1547

    Article  Google Scholar 

  • Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355

    CAS  PubMed  Google Scholar 

  • Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ (2008) Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol 55:476–488

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Directors, BITS, NCAOR and ARI for facilities. PS acknowledges the DST, Government of India for the financial support (Project: SR/WOS-A/LS-68/2009). SMS is thankful to Ms Simintani Naik, Mr Masaharu Tsuji and Mr Jakub Žàrský for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purnima Singh.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, P., Singh, S.M. & Dhakephalkar, P. Diversity, cold active enzymes and adaptation strategies of bacteria inhabiting glacier cryoconite holes of High Arctic. Extremophiles 18, 229–242 (2014). https://doi.org/10.1007/s00792-013-0609-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-013-0609-6

Keywords

Navigation