Log in

QTL map** of Sclerotinia midstalk-rot resistance in sunflower

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In many sunflower-growing regions of the world, Sclerotinia sclerotiorum (Lib.) de Bary is the major disease of sunflower (Helianthus annuus L.). In this study, we mapped and characterized quantitative trait loci (QTL) involved in resistance to S. sclerotiorum midstalk rot and two morphological traits. A total of 351 F3 families developed from a cross between a resistant inbred line from the germplasm pool NDBLOS and the susceptible line CM625 were assayed for their parental F2 genotype at 117 codominant simple sequence repeat markers. Disease resistance of the F3 families was screened under artificial infection in field experiments across two sowing times in 1999. For the three resistance traits (leaf lesion, stem lesion, and speed of fungal growth) and the two morphological traits, genotypic variances were highly significant. Heritabilities were moderate to high (h2=0.55–0.89). Genotypic correlations between resistance traits were highly significant (P<0.01) but moderate. QTL were detected for all three resistance traits, but estimated effects at most QTL were small. Simultaneously, they explained between 24.4% and 33.7% of the genotypic variance for resistance against S. sclerotiorum. Five of the 15 genomic regions carrying a QTL for either of the three resistance traits also carried a QTL for one of the two morphological traits. The prospects of marker-assisted selection (MAS) for resistance to S. sclerotiorum are limited due to the complex genetic architecture of the trait. MAS can be superior to classical phenotypic selection only with low marker costs and fast selection cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barness S, Rufener GK, Lee M, Caligari PDS (1995) Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 91:195–199

    CAS  Google Scholar 

  • Bert P, Jouan F, Tourvieille de Labrouhe D, Seere F, Nicolas P, Vear F (2002) Comparative genetic analysis of quantitative traits in sunflower (Helianthus annuus L.) 1. QTL involved in resistance to Sclerotinia sclerotiorum and Diaporthe helianthi. Theor Appl Genet 105:985–993

    Article  CAS  PubMed  Google Scholar 

  • Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE (2000) QTL map** for resistance against corn borer (Ostrinia nubilalis H.) in early maturing European dent germplasm. Theor Appl Genet 101:907–917

    Article  CAS  Google Scholar 

  • Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    CAS  PubMed  Google Scholar 

  • Castaño F, Vear F, Tourvieille de Labrouhe D (1993) Resistance of sunflower inbred lines to various forms of attack by Sclerotinia sclerotiorum and relations with some morphological characters. Euphytica 68:85–98

    Google Scholar 

  • Degener D, Melchinger AE, Gumber RK, Hahn V (1998) Breeding for Sclerotinia resistance in sunflower: a modified screening test and assessment of genetic variation in current germplasm. Plant Breed 117:367–372

    Google Scholar 

  • Degener J, Melchinger AE, Hahn V (1999) Optimal allocation of resources in evaluating current sunflower inbred lines for resistance to Sclerotinia. Plant Breed 118:157–160

    Article  Google Scholar 

  • Doerge RW, Churchill (1996) Permutation test for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • Gedil MA (1999) Marker development, genome map**, and cloning of candidate disease resistance genes in sunflower, Helianthus annuus L. PhD Thesis, Oregon State University

  • Gedil MA, Wye C, Berry S, Segers B, Peleman J, Lones R, Leon A, Slabaugh MB, Knapp SJ (2001) An integrated restriction fragment length polymorphism-amplified fragment length polymorphism linkage map for cultivated sunflower. Genome 44:213–221

    Article  CAS  PubMed  Google Scholar 

  • Gentzbittel L, Vear F, Zhang YX, Berville A, Nicolas P (1995) Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 90:1079–1086

    CAS  Google Scholar 

  • Gulya T, Rashid KY, Masirevic SN (1997) Sunflower diseases. In: Sunflower technology and production. ASA, CSSA, SSSA, Madison, pp 263–379

    Google Scholar 

  • Hahn V (2002) Genetic variation for resistance to Sclerotinia head rot in sunflower inbred lines. Field Crops Res 77:153–159

    Article  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distance between the loci of linked factors. J Genet 8:299–309

    Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    MathSciNet  MATH  Google Scholar 

  • Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189

    Article  Google Scholar 

  • Jan CC, Vick BA, Miller JF, Kahler AL, Butler ET (1998) Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 96:15–22

    Article  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval map**. Genetics 136:1447–1455

    CAS  PubMed  Google Scholar 

  • Jouan I, Bert P-F, Cambon F, Perrault A, Tourvieille de Labrouhe D, Nicolas P, Vear F (2000) The relations between the recessive gene for apical branching (b1) and some disease resistance and agronomic characters. In: Proceedings of the 15th International Sunflower Conference, Toulouse, pp K54-K59

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Google Scholar 

  • Köhler H, Friedt W (1999) Genetic variability as identified by AP-PCR and reaction to mid-stem infection of Sclerotinia sclerotiorum among interspecific sunflower (Helianthus annuus L.) hybrid progenies. Crop Sci 39:1456–1463

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed  Google Scholar 

  • Langar K, Griveau Y, Kaan F, Serieys H, Varès D, Bervillé A (2002) Evaluation of parameters accounting for Phomopsis resistance using natural infection and artificial inoculation on recombinant inbred lines from a cross between susceptible and resistant sunflower. Eur J Plant Pathol 108:307–315

    Article  Google Scholar 

  • Langar K, Lorieux M, Desmarais E, Griveau Y, Gentzbittel L, Bervillé A (2003) Combined map** of DALP and AFLP markers in cultivated sunflower using F9 recombinant inbred lines. Theor Appl Genet 106:1068–1074

    CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) map** using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  Google Scholar 

  • Mestries E, Gentzbittel L, Tourvieille de Labrouhe D, Nicolas P, Vear F (1998) Analysis of quantitative trait loci associated with resistance to Sclerotinia sclerotiorum in sunflowers (Helianthus annuus L.) using molecular markers. Mol Breed 4:215–226

    Article  CAS  Google Scholar 

  • Miller AJ (1990) Subset selection in regression. Chapman and Hall, London

    Google Scholar 

  • Mode CJ, Robinson HF (1959) Pleiotropism and genetic variance and covariance. Biometrics 15:518–537

    CAS  PubMed  Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker assisted selection efficiency in populations of finite size. Genetics 148:1353–1365

    CAS  PubMed  Google Scholar 

  • Ooijen JW van, Voorrips RE (2001) JoinMap version 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Paniego N, Echaide M, Muños M, Fernàndez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suàrez EY, Hopp HE (2002) Microsatellite isolation and characterisation in sunflower (Helianthus annuus L.). Genome 45:34–43

    Article  CAS  PubMed  Google Scholar 

  • Péres J, Regnault Y (1985) Sclerotinia sclerotiorum (Lib.) de Bary: recherche de moyens chimiques permettant de limiter la production d’inoculum par traitement du sol. In: Proceedings of the 11th International Sunflower Conference, Mar del Plata, pp 363–368

  • Regnault Y (1976) Répartition des principales maladies du tournesol en France. In: Proceedings of the 7th International Sunflower Conference, Krasnodar, pp 179–188

  • Roath WW, Miller JF, Gulya T (1987) Registration of three oilseed sunflower germplasm pools ND-BLPL2, ND-BLOS, and ND-RLOS. Crop Sci 27:373

    Google Scholar 

  • Robert N, Vear F, Tourvieille de Labrouhe D (1987) L’hérédité de la résistance au Sclerotinia sclerotiorum (Lib.) de Bary chez le tournesol. I: Etude des réactions à deux tests mycéliens. Agronomie 7:423–429

    Google Scholar 

  • Sackston WE (1992) On a treadmill: breeding sunflowers for resistance to disease. Annu Rev Phytopathol 30:529–551

    Article  Google Scholar 

  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman W (1993) Map** and characterization of quantitative loci affecting resistance against second generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Google Scholar 

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus map** based on resampling a vast maize testcross experiment and its relevance to quantitative genetics to complex traits. Genetics 167:485–498

    Article  CAS  PubMed  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York, p 475

    Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Thuault M, Tourvieille D (1988) Etude du pouvoir pathogène de huit isolats de Sclerotinia appartenant aux espèces Sclerotinia sclerotiorum, Sclerotinia minor et Sclerotinia trifoliorum sur tournesol. Inf Tech Cetiom 103:21–27

    Google Scholar 

  • Tourvieille D, Vear F (1984) Comparaison de méthodes d’estimation de la résistance à Sclerotinia sclerotiorum (Lib.) de Bary. Agronomie 4:517–525

    Google Scholar 

  • Tourvieille D, Vear F (1990) Heredity of resistance to Sclerotinia sclerotiorum in sunflower. III. Study of reactions to artificial infections of roots and cotyledons. Agronomie 10:323–330

    Google Scholar 

  • Tourvieille D, Mestries E, Vear F (1996) Multilocal Sclerotinia sclerotiorum resistance tests. In: ISA Symposium I: Disease tolerance in sunflower, Be**g, pp 71–76

  • Utz HF (2000) PLABSTAT: a computer program for statistical analysis of plant breeding experiments. Institute for Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval map** of QTL. J Quant Trait Loci 2(1). http://www.uni-hohenheim.de/~ipspwww/soft.html

    Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L, Edwards KJ, Berry S, Leon A, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    CAS  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Prof. Dr. agr. H.H. Geiger on the occasion of his 65th birthday. The Deutsche Forschungsgemeinschaft (DFG) (Sp292/7-1, Ha2253/3-1) supported this work. We thank S. Schillinger, T. Mellin, S. Kaiser, and M. Bosch as well as the staff at the Plant Breeding Research Station, Eckartsweier, for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Hahn.

Additional information

Communicated by G. Wenzel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micic, Z., Hahn, V., Bauer, E. et al. QTL map** of Sclerotinia midstalk-rot resistance in sunflower. Theor Appl Genet 109, 1474–1484 (2004). https://doi.org/10.1007/s00122-004-1764-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1764-z

Keywords

Navigation